Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate. Our aim was to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(4-methoxyphenyl) piperazine (MeOPP), and 1-(3,4-methylenedioxybenzyl) piperazine (MDBP) in the H9c2 rat cardiac cell line. Complete cytotoxicity curves were obtained at a 0-20mM concentration range after 24h incubations with each drug. The EC50 values (μM) were 343.9, 59.6, 570.1, and 702.5 for BZP, TFMPP, MeOPP, and MDBP, respectively. There was no change in oxidative stress markers. However, a decrease in total GSH content was noted for MDBP, probably due to metabolic conjugation reactions. All drugs caused significant decreases in intracellular ATP, accompanied by increased intracellular calcium levels and a decrease in mitochondrial membrane potential that seems to involve the mitochondrial permeability transition pore. The cell death mode revealed early apoptotic cells and high number of cells undergoing secondary necrosis. Among the tested drugs, TFMPP seems to be the most potent cytotoxic compound. Overall, piperazine designer drugs are potentially cardiotoxic and support concerns on risks associated with the intake of these drugs.

In vitro evaluation of the genotoxic potential of plant food supplements (PFS) containing alkenylbenzene compounds / L. Marabini, C.L. Galli, S.J.P.L. Van Den Berg, M. Marinovich. - In: TOXICOLOGY LETTERS. - ISSN 0378-4274. - 229:suppl. 1(2014), pp. 178-179. ((Intervento presentato al 50. convegno Eurotox tenutosi a Edinborough nel 2014 [10.1016/j.toxlet.2014.06.610].

In vitro evaluation of the genotoxic potential of plant food supplements (PFS) containing alkenylbenzene compounds

L. Marabini;C.L. Galli;M. Marinovich
2014

Abstract

Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate. Our aim was to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(4-methoxyphenyl) piperazine (MeOPP), and 1-(3,4-methylenedioxybenzyl) piperazine (MDBP) in the H9c2 rat cardiac cell line. Complete cytotoxicity curves were obtained at a 0-20mM concentration range after 24h incubations with each drug. The EC50 values (μM) were 343.9, 59.6, 570.1, and 702.5 for BZP, TFMPP, MeOPP, and MDBP, respectively. There was no change in oxidative stress markers. However, a decrease in total GSH content was noted for MDBP, probably due to metabolic conjugation reactions. All drugs caused significant decreases in intracellular ATP, accompanied by increased intracellular calcium levels and a decrease in mitochondrial membrane potential that seems to involve the mitochondrial permeability transition pore. The cell death mode revealed early apoptotic cells and high number of cells undergoing secondary necrosis. Among the tested drugs, TFMPP seems to be the most potent cytotoxic compound. Overall, piperazine designer drugs are potentially cardiotoxic and support concerns on risks associated with the intake of these drugs.
Settore BIO/14 - Farmacologia
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378427414008601-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 74.32 kB
Formato Adobe PDF
74.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/254161
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 0
social impact