Background: Shear stress triggers conformational stretching of von Willebrand factor (VWF), which is responsible for its self-association and binding to the platelet receptor glycoprotein (GP)Ibα. This phenomenon supports primary hemostasis under flow. Type 2B VWF natural mutants are considered to have increased affinity for platelet GPIbα. Objectives: To assess the mechanism responsible for the enhanced interaction of the p.R1306W VWF mutant with the platelet receptor. Methods: The interaction of GPIbα with wild-type (WT) and p.R1306W VWF multimers and A1-A2-A3 constructs was investigated with surface plasmon resonance spectroscopy. Analysis of the static VWF conformation in solution was performed with dynamic light scattering spectroscopy. The shear stress-induced self-association of VWF multimers was investigated with atomic force microscopy (AFM) over a 0-60 dyn cm-2 range. Results: WT VWF did not interact with GPIbα under static conditions, whereas the mutant at ~ 2 μg mL-1 already bound to the receptor. By contrast, the WT and p.R1306W-A1-A2-A3 constructs showed comparable affinities for GPIbα (Kd ~ 20 nm). The hydrodynamic diameter of resting R1306W VWF multimers was significantly greater than that of the wild type (210 ± 60 nm vs. 87 ± 22 nm). At shear forces of < 14 dyn cm-2, the p.R1306W multimers rapidly changed conformation, entering a regime of self-aggregation, which, in contrast, was induced for WT VWF by shear forces of > 30 dyn cm-2. Mechanical stretching AFM experiments showed that p.R1306W multimers needed less energy per length unit (~ 10 pN) to be stretched than the WT protein. Conclusions: The increased affinity of p.R1306W VWF for GPIbα arises mostly from higher sensitivity to shear stress, which facilitates exposure of GPIbα binding sites.

The type 2B p.R1306W natural mutation of von Willebrand factor dramatically enhances the multimer sensitivity to shear stress / G.L. Scaglione, S. Lancellotti, M. Papi, M. De Spirito, A. Maiorana, L. Baronciani, M.T. Pagliari, A. Arcovito, E. Di Stasio, F. Peyvandi, R. De Cristofaro. - In: JOURNAL OF THROMBOSIS AND HAEMOSTASIS. - ISSN 1538-7933. - 11:9(2013 Sep), pp. 1688-1698. [10.1111/jth.12346]

The type 2B p.R1306W natural mutation of von Willebrand factor dramatically enhances the multimer sensitivity to shear stress

L. Baronciani;F. Peyvandi
Penultimo
;
2013

Abstract

Background: Shear stress triggers conformational stretching of von Willebrand factor (VWF), which is responsible for its self-association and binding to the platelet receptor glycoprotein (GP)Ibα. This phenomenon supports primary hemostasis under flow. Type 2B VWF natural mutants are considered to have increased affinity for platelet GPIbα. Objectives: To assess the mechanism responsible for the enhanced interaction of the p.R1306W VWF mutant with the platelet receptor. Methods: The interaction of GPIbα with wild-type (WT) and p.R1306W VWF multimers and A1-A2-A3 constructs was investigated with surface plasmon resonance spectroscopy. Analysis of the static VWF conformation in solution was performed with dynamic light scattering spectroscopy. The shear stress-induced self-association of VWF multimers was investigated with atomic force microscopy (AFM) over a 0-60 dyn cm-2 range. Results: WT VWF did not interact with GPIbα under static conditions, whereas the mutant at ~ 2 μg mL-1 already bound to the receptor. By contrast, the WT and p.R1306W-A1-A2-A3 constructs showed comparable affinities for GPIbα (Kd ~ 20 nm). The hydrodynamic diameter of resting R1306W VWF multimers was significantly greater than that of the wild type (210 ± 60 nm vs. 87 ± 22 nm). At shear forces of < 14 dyn cm-2, the p.R1306W multimers rapidly changed conformation, entering a regime of self-aggregation, which, in contrast, was induced for WT VWF by shear forces of > 30 dyn cm-2. Mechanical stretching AFM experiments showed that p.R1306W multimers needed less energy per length unit (~ 10 pN) to be stretched than the WT protein. Conclusions: The increased affinity of p.R1306W VWF for GPIbα arises mostly from higher sensitivity to shear stress, which facilitates exposure of GPIbα binding sites.
Microscopy, atomic force; Platelet adhesiveness; Surface plasmon resonance; Von Willebrand disease, Type 2; Von Willebrand diseases; Von Willebrand Factor; Biopolymers; Humans; Microscopy, Atomic Force; Surface Plasmon Resonance; von Willebrand Factor; Mutation; Stress, Mechanical; Hematology
Settore MED/09 - Medicina Interna
Article (author)
File in questo prodotto:
File Dimensione Formato  
jth12346.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 496.33 kB
Formato Adobe PDF
496.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/253081
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact