Let p be an odd prime and g ≥ an integer. We prove that a finite slope Siegel cuspidal eigenform of genus g can be p-adically deformed over the g-dimensional weight space. The proof of this theorem relies on the construction of a family of sheaves of locally analytic overconvergent modular forms.
p-adic families of Siegel modular cuspforms / F. Andreatta, A. Iovita, V. Pilloni. - In: ANNALS OF MATHEMATICS. - ISSN 0003-486X. - 181:2(2015), pp. 623-697.
p-adic families of Siegel modular cuspforms
F. AndreattaPrimo
;
2015
Abstract
Let p be an odd prime and g ≥ an integer. We prove that a finite slope Siegel cuspidal eigenform of genus g can be p-adically deformed over the g-dimensional weight space. The proof of this theorem relies on the construction of a family of sheaves of locally analytic overconvergent modular forms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
annals-v181-n2-p05-p.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
756.12 kB
Formato
Adobe PDF
|
756.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.