Let p be an odd prime and g ≥ an integer. We prove that a finite slope Siegel cuspidal eigenform of genus g can be p-adically deformed over the g-dimensional weight space. The proof of this theorem relies on the construction of a family of sheaves of locally analytic overconvergent modular forms.

p-adic families of Siegel modular cuspforms / F. Andreatta, A. Iovita, V. Pilloni. - In: ANNALS OF MATHEMATICS. - ISSN 0003-486X. - 181:2(2015), pp. 623-697.

p-adic families of Siegel modular cuspforms

F. Andreatta
Primo
;
2015

Abstract

Let p be an odd prime and g ≥ an integer. We prove that a finite slope Siegel cuspidal eigenform of genus g can be p-adically deformed over the g-dimensional weight space. The proof of this theorem relies on the construction of a family of sheaves of locally analytic overconvergent modular forms.
p-adic modular forms; eigenvarieties; p-adic families of modular forms; Siegel modular forms
Settore MAT/03 - Geometria
Settore MAT/02 - Algebra
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
annals-v181-n2-p05-p.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 756.12 kB
Formato Adobe PDF
756.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/246532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact