The object of study are complete spacelike hypersurfaces in a generalized Robertson-Walker spacetime. We make use of a new local form of the weak maximum principle for a class of operators including the Lorentzian mean curvature operator in order to obtain some mean curvature estimates and height estimates for spacelike hypersurfaces. These estimates are related to some rigidity results. We also give height estimates for spacelike hypersurfaces with constant higher order mean curvature, which are obtained via the local form of the weak maximum principle for an appropriate class of operators.

SPACELIKE HYPERSURFACES IN GENERALIZED ROBERTSON-WALKER SPACETIMES / S. Scoleri ; Advisor: M. Rigoli ; coordinator: L. Van Geemen. Università degli Studi di Milano, 2014 Dec 04. 26. ciclo, Anno Accademico 2013. [10.13130/scoleri-simona_phd2014-12-04].

SPACELIKE HYPERSURFACES IN GENERALIZED ROBERTSON-WALKER SPACETIMES

S. Scoleri
2014

Abstract

The object of study are complete spacelike hypersurfaces in a generalized Robertson-Walker spacetime. We make use of a new local form of the weak maximum principle for a class of operators including the Lorentzian mean curvature operator in order to obtain some mean curvature estimates and height estimates for spacelike hypersurfaces. These estimates are related to some rigidity results. We also give height estimates for spacelike hypersurfaces with constant higher order mean curvature, which are obtained via the local form of the weak maximum principle for an appropriate class of operators.
4-dic-2014
Settore MAT/03 - Geometria
RIGOLI, MARCO
VAN GEEMEN, LAMBERTUS
Doctoral Thesis
SPACELIKE HYPERSURFACES IN GENERALIZED ROBERTSON-WALKER SPACETIMES / S. Scoleri ; Advisor: M. Rigoli ; coordinator: L. Van Geemen. Università degli Studi di Milano, 2014 Dec 04. 26. ciclo, Anno Accademico 2013. [10.13130/scoleri-simona_phd2014-12-04].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08963.pdf

accesso aperto

Tipologia: Tesi di dottorato completa
Dimensione 695.22 kB
Formato Adobe PDF
695.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/244640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact