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Introduction

Constant mean curvature spacelike hypersurfaces in Lorentzian mani-

folds are of great interest both in physical and in mathematical research.

The most relevant aspect is, probably, their role in General Relativity.

For instance, they are involved in the initial value formulation of the

�eld equations. This latter consists in specifying an initial state of the

universe and, then, describing the evolution of this data. One obtains a

spacetime foliated by spacelike hypersurfaces and, assuming the mean

curvature to be constant, the constraint equations are enormously sim-

pli�ed.

In Chapter 3 we study spacelike hypersurfaces in generalilzed Robertson-

Walker spacetimes. Our results are contained in the paper [ARS]. Con-

sider an open interval I ⊆ R, a smooth real function % ∈ C∞(I) and a

Riemannian manifold (Pn, ⟨, ⟩P). Following the terminology introduced

in [ARoS], we de�ne generalized Robertson-Walker spacetime (GRW

spacetime) −I ×% Pn the product manifold I × Pn endowed with the

metric

⟨, ⟩ ∶= −π∗I (dt2) + %2(πI)π∗P(⟨, ⟩P),

where πI and πP denote the projections onto I and Pn respectively.

When the �ber Pn has constant sectional curvature and dim(Pn) = 3

we have the classical Robertson-Walker spacetimes. In this perspec-

tive, these latter are the spatially homogeneous and spatially isotropic

1



model of the universe. Homogeneity and isotropy (known as the cos-

mological principle) seem to be reasonable assumptions if one wants

to describe the universe on large scale. These notions have both an

intellectual credibility and several empirical con�rmations. On smaller

scales, however, they are no more appropriate, so that GRW spacetimes

represent a motivated generalization.

The mathematical interest on constant mean curvature spacelike hy-

persurfaces is, for instance, due to the fact that they exhibit nice Bern-

stein properties. Calabi in [C] showed that the only complete maximal

spacelike hypersurfaces in the Minkowski space Rn+1
1 , with n ≤ 4, are

spacelike hyperplanes. Later on, Cheng and Yau in [CY3] extended this

theorem to any dimension. This result shows the fact that, as in the

Riemannian asset, constant mean curvarture spacelike hypersurfaces in

Lorentzian manifolds are rigid in some sense. One way to generalize the

Bernstein property mentioned above is to consider a spacetime foliated

with many constant mean curvature hypersurfaces and to investigate

under which geometric conditions an immersed constant mean curva-

ture hypersurface is one of the slices of the foliation (see [M1]).

Extending an idea of Salavessa [S], we �rst obtain a curvature estimate

for spacelike graphs and derive some geometric consequences. Namely,

we prove

Theorem 1. Let (Pn, ⟨, ⟩P) be an n-dimensional Riemannian manifold

and let u ∈ C∞(Pn), with u ∶ Pn → I = (a, b), be such that its graph Σ(u)
is a spacelike hypersurface of −R×ρPn with bounded hyperbolic angle θ.

We have

inf
Pn
H ≤ sinh(θ∗)

nρ(u∗) h(P
n) if ρ′ ≤ 0,

sup
Pn

H ≥ −sinh(θ∗)
nρ(u∗)

h(Pn) if ρ′ ≥ 0,
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where H is the mean curvature of Σ(u), θ∗ = supP θ <∞, u∗ ∶= supP u ≤
b, u∗ ∶= infP u ≥ a and h(Pn) denotes the Cheeger constant of Pn.
We allow ρ(u∗) and ρ(u∗) to be zero and in these cases we have the

trivial inequalities.

Then, we furnish a height estimate for spacelike graphs in a GRW-

spacetime

Theorem 2. Consider a generalized Robertson-Walker spacetime −I×%
Pn, and assume on Pn the validity of the weak maximum principle for

the Lorentzian mean curvature operator. Let Σ(u) be an entire spacelike

maximal graph in −I ×% Pn, with I = (a, b), −∞ ≤ a < b ≤ +∞, which is

not a slice. Then

either u∗ = b or u∗ ≤ inf{λ ∈ I ∶ %′(t) < 0 on [λ, b)}. (1)

Similarly,

either u∗ = a or u∗ ≥ sup{µ ∈ I ∶ %′(t) > 0 on (a,µ]}. (2)

As a consequence we obtain a nice rigidity result.

Corollary 3. Consider a generalized Robertson-Walker spacetime −I×%
Pn, and assume on Pn the validity of the weak maximum principle for

the Lorentzian mean curvature operator. For a, b ∈ I, a < b, let

(a, b) × Pn = {(t, x) ∶ a < t < b, x ∈ Pn}

be an open slab in −I ×%Pn, and assume that there exists t0 ∈ (a, b) with
the property that %′(t) > 0 on [a, t0) and %′(t) < 0 on (t0, b]. Then the

only entire maximal graph contained in (a, b) × Pn is the slice u ≡ t0.

The proof of Theorem 2 is based on a local form of the weak maxi-

mum principle introduced in [AMR] with the name open weak maximum
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principle. Chapter 2 of the present dissertation is devoted to a discus-

sion on this useful analytic tool. We state the open weak maximum

principle (open-WMP) for a class of di�erential operators including the

Lorentzian mean curvature operator and we prove the equivalence be-

tween the open-WMP and its classical version (see [ARS]). Moreover,

we give a geometric su�cient condition which guarantees the validity

of the WMP for Lorentzian mean curvature operator.

In the second part of Chapter 3 we give some height estimates for con-

stant kth-mean curvature spacelike hypersurfaces immersed in GRW

spacetimes and in the special case of Lorentzian products. These esti-

mates relate the height of the hypersurface (or a portion of it) with its

kth mean curvature. Again, the argument is based on the open-WMP

for di�erential operators arising naturally in this context, the Newton

operators. To give an example, in the case of products, we prove

Theorem 4. Let F ∶ Σn → −R×Pn be a stochastically complete spacelike
hypersurface with constant mean curvature H > 0. Suppose that for

some α > 0

RicP ≥ −nα. (3)

Let Ω ⊂ Σ be an open set with ∂Ω ≠ ∅ for which F (Ω) is contained in

a slab and F (∂Ω) ⊂ {0} × Pn. Assume

β2 = sup
Ω

Θ2 < α +H
2

α
. (4)

Then

F (Ω) ⊂ [ (1 − β)H
H2 − α(β2 − 1) ,0] × Pn. (5)

Our height estimates can be put in the context of many results in

the same spirit, both in the Riemannian and in the Lorentzian asset.

The �rst step in this direction is a theorem of Serrin [Se].
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Theorem 5. Let H be a positive constant and u(x, y) a C2 solution of

the equation

div
⎛
⎝

∇u√
1 + ∣∇u∣2

⎞
⎠
= 2H (6)

in a bounded domain Ω ⊂ R2. If u is continuous up to the boundary of

Ω, then we have

m − 1

H
≤ u <M in Ω, (7)

where m andM are respectively the minimum and the maximum bound-

ary values of u.

Later on, many generalizations of this result have been proposed

by geometers. For instance, one can consider higher order mean cur-

vatures, hypersurfaces which are not necessarily graphs or an ambient

space that is not the Euclidean space and even not Riemannian. In

Chapter 1 we give a brief survey on this topic in order to put our re-

sults contained in Chapter 3 in the right context.

At last, in Chapter 4 we consider the problem of height estimates for

compact hypersurfaces in the A�ne space. The problem, here, is that

we do not have in general a distance function between points in an a�ne

set. What we do is introducing a distance between points and special

hyperplanes that is invariant under a�ne transformations. Using this

notion we achieve a sharp estimate that looks formally the same as in

the Riemannian case. This result is contained in the paper [Sc].
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Chapter 1

Rigidity results for constant

mean curvature hypersurfaces:

a brief survey.

Constant mean curvature (brie�y, CMC) surfaces in R3 are the math-

ematical model for soap �lms and bubbles. This is due to the fact that

mean curvature is strictly linked to a variational problem regarding

the area functional. Speci�cally, given a simple, closed curve (i.e. a

Jordan curve) Γ ⊂ R3, surfaces with boundary Γ minimizing the area

must have zero mean curvature. Analogously, non-zero constant mean

curvature hypersurfaces immersed in an ambient manifold are critical

points of the area functional for variations preserving volume. The sur-

face tension of a soap �lm works to minimize the surface area, so that

the investigation of these materials from a physical viewpoint motivate

a geometric study of CMC hypersurfaces.

One of the most relevant facts in this topic is that CMC hypersurfaces

are rigid in some sense, since their shape can not be any. In 1962

Alexandrov showed that the only compact CMC hypersurface embed-

ded in Rn+1 is the round sphere [Al], while H. Hopf in [Ho] obtained the
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same conclusion for immersed closed surfaces of genus g = 0. The sharp-

ness of these results is proved by the fact that there exist examples of

genus greater than zero, non-embedded hypersurfaces of constant mean

curvature (see [We], [K]).

On the other hand, if u ∈ C2(Rn) and its graph is a minimal hypersur-

face of Rn+1 then u must be linear, provided n < 7. This problem is

known as Bernstein problem, since he introduced it and proved it in the

case n = 2. Fleming in [F] gave a new proof of the theorem deducing

it from the fact that the falsity of Berstein theorem would imply the

existence of minimal cones in R3. De Giorgi in [DeG] improved Flem-

ing's idea showing that, if in Rn Bernstein theorem does not hold true,

then there exist minimal cones in Rn−1. Hence he extended Bernstein

result to R4. Almgren proved the non-existence of minimal cones in R4

and Simons generalized this result up to dimension 7 (see [Alm], [Si]).

Therefore we have the validity of Bernstein theorem through dimension

8. In [Si] Simons gave also examples of locally stable cones in R2m for

m ≤ 4. Finally, in [BDeGG] the authors proved that Simons' cones

are indeed global minimizing and furnished examples of minimal graph

that are not hyperplane in Rn with n ≥ 9.

The case of prescribed boundary compact CMC hypersurfaces required

a di�erent approach. Consider a Jordan curve Γ ⊂ Rn and a real pa-

rameter H. The Plateau problem for constant mean curvature consists

in looking for a hypersurface S of constant mean curvature H whose

boundary is Γ. In the literature there are several existence results

with some assumptions on Γ and H. For instance, Heinz in [H54]

proved that if Γ is contained in the unit ball about the origin of R3

and H < 1
8(

√
17 − 1) there exists a solution to Plateau problem for H-

constant mean curvature surfaces with boundary Γ. Later on, Werner

[Wer] improved Heinz' assumption to H < 1
2 . The sharpest result in this

direction is due to Hildebrandt [Hi] who assumed H ≤ 1. We remark
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that the authors above showed the existence of a small solution to the

Plateau problem, that is a surface contained in the unit disc of R3.

On the other hand, for a geometric reasoning one can imagine that

the hypersurface S could cease to exist if H is larger than some con-

stant related to the prescribed boundary Γ. In [H69] Heinz proved that

the Plateau problem mentioned above has no solution x ∈ C2(B,R3) ∩
C0(B,R3) with

H > l(Γ)
k(Γ) , (1.1)

where l(Γ) is the length of the boundary, k(Γ) ∶= ∣ ∫Γ x × dx∣ and B

denotes the unit disc in R2. The boundary Γ is assumed to be recti�-

able. This result is related to the fact that there can not exist a CMC

graph over a circle of radius larger than 1
H (see [H55]). Our Theorem

39, proved in Chapter 3, is linked to Heinz result (1.1).

In [Se] Serrin gives a su�cient condition for the surface solution to the

Plateau problem to be unique. Speci�cally, he proved that if 0 <H ≤ 1

there are exactly two solutions of constant mean curvature H contained

in the unit ball and with no self intersections. In the same paper, the

author gives a limitation on the diameter of the region where a CMC

surface spanning a Jordan curve Γ contained in the unit disc must lie,

accordingly with its mean curvature H. Namely, he gave the following

theorem

Theorem 6. Let Γ be a Jordan curve contained in the closed unit ball

B about the origin of R3. Suppose that S is a solution of the Plateau

problem for constant mean curvature H > 0 with no self intersections.

Then it must be contained in the open ball of radius 1 + 2/H about the

origin.

Note that the result is sharp in the sense that constant 1+ 2/H can

not be improved. Indeed, consider a sphere Σ of radius 1/H intersecting

the unit ball along a circle. Choosing this latter to be as little as we
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want, moving the center of Σ away from the origin, the part of the

sphere lying outside the unit ball furnish an example of solution for the

H-Plateau problem which is not contained in a ball with radius smaller

than 1 + 2/H.

In order to prove Theorem 1, Serrin obtained a height estimate for a

constant mean curvature graph over a planar domain Ω. He showed

the following maximum principle

Theorem 7. Let H be a positive constant and u(x, y) a C2 solution of

the equation

div
⎛
⎝

∇u√
1 + ∣∇u∣2

⎞
⎠
= 2H (1.2)

in a bounded domain Ω ⊂ R2. If u is continuous up to the boundary of

Ω, then we have

m − 1

H
≤ u <M in Ω, (1.3)

where m andM are respectively the minimum and the maximum bound-

ary values of u.

Proof. We will not give the original proof by Serrin. Instead, we use an

argument inspired to an idea of Korevaar, Kusner, Meeks and Solomon,

who obtained an analogous height estimate in the hyperbolic space (see

[KKMS]).

First of all, note that there can not be an interior maximum of the

graph of u since it has positive mean curvature. This proves the right-

hand side of (1.3). Suppose, now, without loss of generality, thatm = 0.

Just observe that the mean curvature equation (1.2) is invariant under

vertical traslations. Let {e1, e2, e3} be a Darboux frame for the graph,

{ω1, ω2, ω3} the corresponding co-frame and {ωij}3
i,j=1 the connection

forms. Denote by x the position vector of the graph and f ∶= ⟨x, a⟩,
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where a ∈ R3 and ⟨, ⟩ is the canonical scalar product in R3. We have

df = ⟨ei, a⟩ωi =∶ fiωi

fijω
j = d⟨ei, a⟩ − ⟨ek, a⟩ωki
= ⟨es, a⟩ωsi + ⟨e3, a⟩ω3

i − ⟨ek, a⟩ωki
= ⟨e3, a⟩hijωj

where i = 1,2. Hence ∆⟨x, a⟩ = fii = 2H⟨e3, a⟩, denoting with ∆ the

Laplacian of the metric on the graph induced by the isometric immer-

sion in R3. Analogously, denoting with z ∶= ⟨e3, a⟩ we have

dz = ⟨ek, a⟩ωk3 = −hks⟨ek, a⟩ωs ∶= zsωs

zsjω
j = −d(hks⟨ek, a⟩) + hkt⟨ek, a⟩ωts
= −dhks⟨ek, a⟩ − hks⟨et, a⟩ωtk − hks⟨e3, a⟩ω3

k + hkt⟨ek, a⟩ωts
= −hksj⟨ek, a⟩ωj − hjshjk⟨e3, a⟩ωk.

Hence ∆⟨e3, a⟩ = −∣II ∣2⟨e3, a⟩ − 2H,k⟨ek, a⟩.
Therefore, we introduce the well known function (see, for instance, [R])

ψ ∶=H⟨x, a⟩ + ⟨e3, a⟩,

where we set a ∶= (0,0,1).
We choose

e3 ∶= (−ux,−uy,1)
1√

1 + ∣∇u∣2
.

We have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆ψ = (2H2 − ∣II ∣2)⟨e3, a⟩ ≤ 0 on Ω

ψ = 1√
1+∣∇u∣2

≥ 0 on ∂Ω,

recalling that the mean curvature H is constant. Applying the classical
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maximum principle, we deduce ψ ≥ 0 on Ω, that is

Hu ≥ − 1√
1 + ∣∇u∣2

≥ −1.

We conclude u ≥ −1/H.

The proof we gave for Serrin's theorem works equal in several di-

mensions, so we may extend the result for CMC graphs in Rn.

In [Ro] Rosenberg generalized this height estimate for constant k-th

mean curvature hypersurfaces Σ embedded in space forms with bound-

ary ∂Σ contained in a hyperplane. For 2 ≤ k ≤ n, k-th mean curva-

tures are de�ned via the symmetric functions of the principal curva-

tures and represent the natural generalization of the mean curvature

H. The bound found by Rosenberg for embedded constant k-mean

curvare hypersurfaces is h ≤ 2(1/Hk)
1
k , where h denotes the height over

the hyperplane containing the boundary. The author �rst assumes the

hypersurface to be a graph and achieved the estimate h ≤ 1/Hk

1
k . Then,

using a moving plane argument, he observes that one can consider an

embedded hypersurface, obtaining the height estimate h ≤ 2(1/Hk)
1
k .

Another possible generalization of Serrin's height estimate constists in

substituting R3 with M × R, where (M,g) is a Riemannian manifold.

This is the natural ambient for the graph of a real function de�ned on

a di�erential manifold. Consider, �rst, the case where M is a Rieman-

nian surface. The �rst height estimate in this asset is due to Ho�man,

de Lira and Rosenberg, see [HLR].

Theorem 8. Let Σ be a constant mean curvature graph over a compact

region of M . Assume the boundary ∂Σ to be contained in a slice, that is

an hypersurface of the form M ×{a}, where a is a real number (assume

WLOG a = 0). If the Gaussian curvature of M satis�es KM ≥ 2τ , with
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τ < 0, and the mean curvature of Σ satis�es ∣H ∣2 ≥ ∣τ ∣ then

h ≤ H

H2 − ∣τ ∣ , (1.4)

denoting with h the projection onto R restricted to Σ.

This result has been improved by Aledo, Espinár, Gálvez in [AEG].

We remark here that a-priori height estimates have a great importance

in the study of topological and geometric properties of submanifolds

and, in terms of a classi�cation of CMC hypersurfaces, they reveal

a useful tool in order to achieve rigidity and uniqueness results. For

instance, in [HLR] the authors used their height estimate in order to

show a non-existence result. Speci�cally

Theorem 9. Let Σ be a non-compact surface embedded in M2 × R
with constant mean curvature H. Assume M2 to be closed and to have

Gaussian curvature bounded from below by 2τ . In case τ < 0, assume

also H2 > ∣τ ∣. Then Σ can not lie in a halfspace.

We call halfspace a subset of M2 × I ⊂ M2 × R where I is an in-

terval of the type (−∞, a] or [a,+∞), with a ∈ R. The fact that Σ

can not lie in a halfspace gives informations on its topology at in�nity.

Indeed, it means that Σ must have top and bottom ends. We can think

of the number of ends of a manifold, roughly speaking, as a way of

counting the connected components of a manifold at in�nity. We say

that a topological space X has at least k ends if there exists an open,

relatively compact set A ⊂ X such that X − A has k connected non-

compact components. Several authors introduced independently the

notion of ends, mostly because they are linked with compacti�cation of

topological spaces. We give here Freudenthal's de�nition (see [Fr])

De�nition 10. Let X be a connected, locally connected, locally com-

pact Hausdor� space. We say that an end of X is an equivalence class
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of descending sequences {Gj} of connected, open sets with compact

boundaries such that ⋂∞
j=1Gj = ∅. We say that two such sequences are

equivalent if each set of one sequence is contained in some set of the

other one and vice versa.

In [CR] Cheng and Rosenberg generalized the height estimates in

M2×R mentioned above to the case of n dimensions and of higher order

mean curvatures. Speci�cally, they considered compact vertical graphs

in Mn × R with positive constant r-mean curvature Hr, for 1 ≤ r ≤ n,
and with boundary contained in Mn × {0}. In order to obtain their re-

sult they assume positive sectional curvature for generic r and sectional

curvature bounded from below for r = 2.

In [AD] Alías and Dajczer generalized the estimate contained in [HLR]

in the following sense. Consider f ∶ Σn → Mn × R a compact hyper-

surface of constant mean curvature H and boundary ∂Σn contained in

the slice M0. Assume RicM ≥ n/(n − 1)α for some α ≤ 0, H2 ≥ ∣α∣ and
Θ ∶= ḡ(N,∂t) ≤ 0, where ḡ is the product metric, N is the outward

directed unit normal and ∂t the coordinate �eld in R. Then we have

f(Σn) ⊂M × [0,
H

H2 − ∣α∣] .

Moreover, they introduced a further generalization. Let I ⊆ R be an

open interval, % ∶ I → R+ be a smooth function and (Pn, g) a complete

n-dimensional Riemannian manifold. The warped product M̄ ∶= I ×%Pn
is the product manifold I × Pn endowed with the Riemannian metric

gM̄ ∶= π∗I (dt2) + %2(πI)π∗M(g),

where πI and πM denote the projections onto I and Pn respectively. Un-
like the product case, in general warped products the slicesMt = {t}×M
have not necessarily zero mean curvature, speci�callyMt has mean cur-
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vature Ht ∶= %′(t)/%(t). This class of manifolds, as Montiel pointed out

in [M], represents a natural choice in order to extend Alexandrov's

rigidity result to the case of non-constant sectional curvature ambient

space. The slices Pnt form a foliation of the manifold M̄ with constant

mean curvature complete hypersurfaces. An interesting problem can

consist, now, in �nding some geometric conditions on an immersed hy-

persurface forcing it to be a slice.

Alías and Dajczer in [AD] obtained, then, height estimates for constant

mean curvature hypersurfaces in some special cases of the above intro-

duced warped products, namely where %(t) ∶= et and %(t) ∶= cosh(t).
These spaces are known as pseudo-hyperbolic spaces (see [T]).

Theorem 11. Let f ∶ Σn → I ×et Pn be a compact hypersurface of

constant mean curvature H ∉ [0,1) and nonempty boundary f(∂Σn) ⊂
Pnt . Assume that RicP ≥ 0 and that the angle function Θ does not change

sign. Set C ∶= log(H/(H − 1)). Then we have

1. if H < 0 then f(Σn) ⊂ [τ +C, τ] × Pn;

2. if H > 1 then f(Σn) ⊂ [τ, τ +C] × Pn;

3. if H = 1 then f(Σn) ⊂ Pnt .

Theorem 12. Let f ∶ Σn → I ×cosh(t) Pn be a compact hypersurface of

constant mean curvature and nonempty boundary f(∂Σn) ⊂ Pn0 . As-

sume that RicP ≥ −1 and that the angle function Θ does not change

sign. Set tanh(C) ∶= 1/H. Then we have

1. if H < −1 then f(Σn) ⊂ [C,0] × Pn;

2. if H > −1 then f(Σn) ⊂ [0,C] × Pn;

3. if H = 0 then f(Σn) ⊂ Pn0 .

14



In [AMR] the authors gave a generalization of [AD, Theorem 3.5]

considering open subsets with nonempty boundary in complete non-

compact hypersurfaces. This generalization is due to the main result

of the paper, the equivalence of the weak maximum principle to a local

version of it, the open weak maximum principle (for further details see

Chapter 2). They proved the following

Theorem 13. Let f ∶ Σn → R × Pn be a complete hypersurface with

constant mean curvature H > 0. Assume that β ∶= supΣ Θ < 0 and

suppose that KP ≥ −α and H2 > α, for some α > 0. Furthermore,

assume that for the Weingarten operator A of Σ

∣A(x)∣ ≤ G(r(x))

for some G ∈ C1([0,+∞)) satisfying

(i) G(0) > 0 (ii) G′(t) ≥ 0 1/G(t) ∉ L1(+∞),

where r(x) denotes the distance in Σ from some �xed origin o. If Ω ⊂ Σ

is an open set with ∂Ω ≠ ∅ for which f(Ω) is contained in a slab and

f(∂Ω) ⊂ P0 then

f(Ω) ⊂ [0, (1 + β)H
H2 − α ] × Pn.

In the same paper the authors generalized Theorem 13 for constant

higher order mean curvatures.

In Chapter 3 we �nd some results, in the spirit of the above mentioned

ones, where the ambient space is a Lorentzian manifold. These results

are contained in the paper [ARS]. Our focus will be constant mean

curvature spacelike hypersurfaces, that are hypersurfaces where the re-

striction of the Lorentzian ambient metric is Riemannian. The study

of these objects is motivated by physical and mathematical interests.

Indeed, Lorentzian geometry is the mathematical base for general rel-
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ativity and CMC spacelike hypersurfaces play a central role in this

physical area. For instance, they are involved in the so called initial

value formulation of the �eld equations. Just to give a �avour, consider

as initial data a triple (Σ, g,K) where (Σ, g) is a Riemannian mani-

fold and K a symmetric tensor �eld on it. One looks for a spacetime

(M, ⟨, ⟩) satisfying Einstein equations (see Chapter 3) and possessing

a spacelike hypersurface isometric to (Σ, g), with second fundamental

form K. This spacetime is foliated by hypersurfaces Σt representing

the time evolution of Σ (see [W] and [HE] for further details).

From a geometric point of view, spacelike hypersurfaces in the Lorentz-

Minkowski space Rn
1 have a nice Bernstein-type property. In [C] Calabi

proved that the only complete maximal spacelike hypersurfaces in Rn
1 ,

with n ≤ 5, are spacelike hyperplanes. Later on, Cheng and Yau in

[CY3] extended Calabi's result to any dimension. In another direction,

this result can be generalized to prove that spacelike hyperplanes are

the only complete constant mean curvature hypersurfaces in Rn+1
1 with

image of the Gauss map contained in a geodesic ball of the hyperbolic

space (see [Ai], [P], [X]).

Now, as we commented above in the Riemannian case, we can look for

a generalization of Bernstein theorem in a larger class of Lorentzian

manifolds. Namely, we consider the natural Lorentzian analogue to

Riemannian warped products. Following the terminology introduced in

[ARoS], we call generalized Robertson-Walker spacetime M̄ ∶= −I ×% Pn
the product manifold I × Pn endowed with the metric

⟨, ⟩ ∶= −π∗I (dt2) + %2(πI)π∗P(⟨, ⟩P),

where I is an open interval, (Pn, ⟨, ⟩P) is a Riemannian manifold and

% is a positive smooth function on I. As in the Riemannian case, M̄

is foliated by constant kth mean curvature spacelike slices {t}×Pn, for
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1 ≤ k ≤ n, and Bernstein problem consists in investigating under which

circumstances a complete k-CMC spacelike hypersurface has to be a

leave of the foliation.

In [ARoS] Alías, Romero and Sanchez showed that a CMC compact

spacelike hypersurface in a spatially closed generalized RobertsonWalker

spacetime obeying the timelike convergence condition must be a slice,

except very exceptional cases. We say that generalized Robertson-

Walker spacetime is spatially closed if the Riemannian factor is com-

pact. Montiel in [M1] studied the same problem obtaining that the only

CMC compact hypersurfaces in a generalized spatially closed Robert-

son Walker spacetime satisfying the null convergence condition are the

spacelike slices, unless the case of round umbilical spheres in De Sit-

ter space. We recall that a spacetime satis�es the timelike convergence

condition if its Ricci curvature is non-negative on timelike vectors while

it obeys the null convergence condition if its Ricci curvature is non-

negative on lightlike (null) directions. Observe that the �rst require-

ment implies the second one because of continuity. For the case of

constant higher order mean curvature see [AC1].

In [AIR] Alías, Impera and Rigoli considered the case of complete

noncompact hypersurfaces. The assumptions they made on the am-

bient space is that the sectional curvature of the Riemannian factor

is bounded from below and the warping function satis�es log(%)′′ ≤ 0.

Regarding hypersurface Σ in exam, apart the constancy of a higher

order mean curvature, the authors assumed supΣ ∣H1∣ <∞ and that the

hypersurface Σ is contained in a slab, conditions automatically satis�ed

in the compact case. The conclusion is that, in the above assumptions,

Σ is forced to be a slice.

As in the Riemannian case, a-priori height estimates for hypersurfaces

immersed in spacetimes settle in the context of uniqueness results as

they furnish a quantitative measure of the deviation of the hypersurface
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from being a slice. For instance, in [deL] de Lima found a sharp height

estimate for compact spacelike hypersurfaces with constant rth mean

curvature immersed in Lorentz-Minkowski space and used it to have

informations on the topology of such hypersurfaces at in�nity. Namely,

he obtained

Theorem 14. Let ψ ∶ Σn → Rn+1
1 be a compact spacelike hypersurface

whose boundary is contained in {0}×Rn. Suppose that Hr is a positive

constant and that the hyperbolic image of Σ is contained in a geodesic

ball of radius % > 0 and center en+1 in the hyperbolic space Hn. Then

the height h of Σ satis�es the inequality

∣h∣ ≤ cosh% − 1

H
1
r
r

. (1.5)

For the case of spacelike surfaces in R3
1 we cite the work of López

[Lo].

As an application of estimate (1.5), the author considered a complete

spacelike non-zero r-CMC hypersurface with one end immersed in Rn+1
1

with hyberbolic image contained into a geodesic ball of Hn and he

showed that its end can not be divergent.

Remark 15. Consider the hyperbolic caps

Σn
λ ∶= {x ∈ Rn+1

1 ∣⟨x,x⟩ = −λ2, λ < xn+1 <
√

1 + λ2}, λ > 0,

where ⟨, ⟩ denotes the Lorentzian metric

⟨x, y⟩ ∶=
n

∑
i=1

xiyi − xn+1yn+1.

They are spacelike hypersurfaces in Rn+1
1 with Hr = 1/λr > 0 and with

hyperbolic image contained in a ball of Hn centered in en+1 and with
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radius % ∶= cosh−1
√

1 − 1
λ2 . Hence, their height satis�es

h =
√

1 + λ2 − λ = cosh% − 1

H
1
r
r

and we deduce that estimate (1.5) is sharp.

In [CL] Colares and Lima generalized Theorem 14 considering as

ambient space a Lorentzian product −R × Pn. They gave

Theorem 16. Let Σn be a compact spacelike hypersurface immersed in

a Lorentzian product −R×Pn, where (Pn, g) is a Riemannian manifold

with non-negative constant sectional curvature kP. Suppose that Σn has

positive constant rth mean curvature Hr, for some 1 ≤ r ≤ n, and that

its boundary ∂Σn is contained in the slice {0} × Pn. Then the vertical

height of Σ satis�es the inequality

∣h∣ ≤ C − 1

H
1
r
r

,

where C ∶= sup∂Σ ∣Θ∣.

As an application of Theorem 16 the authors found the following

result regarding the topology at in�nity of the hypersurface in exam

Corollary 17. Let Σn be a complete spacelike hypersurface immersed

in a spatially closed Lorentzian product −R × Pn. Suppose that one of

the following conditions is satis�ed

1. the Riemannian �ber Pn has non-negative Ricci curvature and Σn

has positive constant mean curvature

2. the Riemannian �ber Pn has non-negative constant sectional cur-

vature and Σn has positive constant rth mean curvature Hr, for

some 1 ≤ r ≤ n.
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If the hyperbolic angle Θ is bounded then the number of ends of Σn is

not one.

We conclude here our brief survey on rigidity of constant mean

curvature hypersurfaces in Riemannian and Lorentzian ambient spaces.

In Chapter 3 we report some results obtained in the same spirit of

the ones commented in the present Chapter and which settle in the

geometric context outlined here. They are contained in the paper [ARS]

and the main tool in the proof on many of them is the open weak

maximum principle, a useful analytic tool that we are going to introduce

and discuss in the following Chapter.
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Chapter 2

The open weak maximum

principle

2.1 The maximum principle at in�nity in a

nutshell

The weak maximum principle turns out to be a powerful analytic tool

in the study of several geometric problems. In [AMR] the authors

introduce a local form of the principle for a wide class of operators

and they prove that it is equivalent to the classical version. Although

the reasoning in the proof of this result seems to be straightforward,

the new form of the principle, called by the authors the open weak

maximum principle, allows them to yeald some interesting geometric

applications.

Clearly, a smooth function f on a compact Riemannian manifold (M,g)
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admits a point p ∈M such that

i) f(q) ≤ f(p) for any q ∈M ;

ii) ∇f(p) = 0;

iii) Hessf(p) is negative semi-de�nite.

We may look for an analogous property replacing compactness with

completeness and assuming f to be bounded above. For instance, we

may question if, �xed any ε > 0, there exists a point p ∈M such that

i) f(p) > sup(f) − ε;
ii) ∣∇f(p)∣ < ε;
iii) Hess(f)(p) < εg, in the sense of the quadratic forms.

This problem has been introduced by Omori in [Om]. He observes

that, while in R each smooth function bounded from above satis�es

the property discussed, in general complete Riemannian manifolds this

may fail to be true. Indeed, the author exhibits a complete metric in R2

and a function f ∈ C∞(R2) bounded from above such that there exists

a > 0 for which

m(p) = max{Hessp(f)(Xp,Xp) ∣ ∥Xp∥ = 1} > a,

for every p ∈ R2.

A central point in this topic is that the property investigated, that has

a pure analytic formulation, looks strongly linked with the geometry of

the underlying manifold. Omori in [Om] proved that if the sectional

curvature of a complete Riemannian manifold (M,g) has a lower bound,
then for any f ∈ C∞(M) bounded from above (f∗ ∶= supM f <∞) and for

any ε > 0 there exists a point p ∈M such that f(p) > f∗ − ε, ∣∇f(p)∣ < ε
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and m(p) = max{Hessp(f)(Xp,Xp) ∣ ∥Xp∥ = 1} < ε. Therefore, in some

cases the geometry of (M,g) makes available an analytic tool in the

form of a maximum principle and we come full circle using it in order

to investigate further geometric properties of the manifold. In fact,

Omori introduced this maximum principle for geometric purposes: he

proved that a complete manifold isometrically immersed in a cone of

Rn, with sectional curvature bouded from below admits some point

where the second fundamental form is positive de�nite, for a choice

of the unit normal. Later on, Yau re�ned the principle replacing the

Hessian with its trace, the Laplacian, and he used it to study several

geometric problems (see [Y], [CY2]). Again, the geometry of (M,g) is

involved in Yau's result, since he assumed a lower bound on the Ricci

tensor.

We can now introduce the following

De�nition 18. We say that the Omori-Yau maximum principle for

the Laplacian holds on the Riemannian manifold (M,g) if, for any

u ∈ C2(M) bounded from above, there is a sequence {xn} ⊂ M such

that

i)u(xn) > u∗ − 1/n ii)∣∇u(xn)∣ < 1/n iii)∆u(xn) < 1/n. (2.1)

As Pigola, Rigoli and Setti pointed out in [PRS], it turns out that,

in several geometric applications, the gradient condition plays no role.

So they relaxed (2.1) introducing the following

De�nition 19. We say that on (M,g) the weak maximum principle

for the Laplacian holds if, in the same assumptions as in De�nition 18,

we have the validity of i) and iii) in (2.1).

The adjustment in De�nition 19 may seem to be technical but it is

indeed deep. In fact, in [PRS] the authors proved that the weak max-

imum principle is equivalent to the stochastic completeness of (M,g).
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This is a striking result if one is interested in studying a manifold from

the stochastic analysis viewpoint. Since we do not adopt this perspec-

tive in our work, we only observe that one could think of Brownian

completeness as the property that the time-life of each random path is

almost surely in�nite.

Despite what appears in the works of Omori and Yau, the validity of

the maximum principle in De�nition 18 does not depend so strictly on

curvature bounds. In fact, in [PRS1, Theorem 1.9] the authors give

a su�cient condition for the validity of the maximum principle which

is of functional theoretic type. The innovative viewpoint contained in

this result is based on the existence of an auxiliary proper function γ,

whose gradient and Laplacian satisfy some estimates. This new ap-

proach paved the way for several new applications, since it does not

require any curvature bound. The argument consists in transforming

the function u in exam (see De�nition 18) by means of γ, in order to

obtain a new function with a �nite maximum. The idea of passing

from bounded functions to functions admitting a maximum was intro-

duced by Cheng and Yau in [Y], [CY2] and is inspired to an old work

of Ahlfors [A].

We give, below, a recent improvement of [PRS1, Theorem 1.9], see

[AAR, Theorem B], which deals with a large class of linear di�erential

operators we are going to de�ne. Indeed, we stress the fact that the

di�erential operator arising naturally in several geometric applications

is not necessarly the Laplacian. Hence, it turns out to be desirable

to have a global maximum principle as in De�nition 18 or 19 where

condition iii) is replaced by an analogous control on the appropriate

operator.

Let T be a symmetric positive semi-de�nite (0,2)-tensor �eld on a Rie-

mannian manifold (M,g) and X a vector �eld. We denote by L = LT,X
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the di�erential operator

Lu ∶= Tr(T ○Hess(u)) + div(T∇u) − g(X,∇u), (2.2)

where u ∈ C2(M). If X = (divT )♯, then

Lu = Tr(T ○Hess(u))

is a typical trace operator, where we denoted with ♯ ∶ T ∗M → TM the

musical isomorphism. Moreover, if T coincides with the metric g, we

have

Lu = ∆u − g(∇u,X),

which is the so called X-Laplacian, denoted by ∆X , an operator arising

in the study of general soliton structures.

We can now state

Theorem 20. [AAR, Theorem B] Let (M,g) be a Riemannian man-

ifold and L as in (2.2). Let q ∈ C0(M), q ≥ 0 and suppose

q > 0 outside a compact set.

Let γ ∈ C2(M) be such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ(x)→ +∞ as x→ +∞
q(x)Lγ(x) ≤ B outside a compact set

∣∇γ∣ ≤ A outside a compact set,

(2.3)

for some constants A,B > 0. If u ∈ C2(M) and u∗ <∞ then there exists

a sequence {xk} ⊂M such that

i) u(xk) > u∗ − 1/k ii) ∣∇u(xk)∣ < 1/k iii) q(xk)Lu(xk) < 1/k (2.4)
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for each k ∈ N.

In the case q ≡ 1, conclusion (2.4) is the Omori-Yau maximum prin-

ciple. On the other hand, if q ≢ 1, we refer to (2.4) as the q-maximum

principle.

Now, we move to the case of nonlinear di�erential operators of ge-

ometric interest. In [PRS1] the authors introduced the Omori-Yau

maximum principle for the so-called φ-Laplacian. Consider a function

φ ∈ C1((0,+∞)) ∩ C0([0,+∞)) such that

i) φ(0) = 0 ii) φ(t) > 0 for t > 0 iii) φ(t) ≤ Atδ for t ∈ [0, ε), (2.5)

for some constants A, δ, ε > 0. The di�erential operator

Lφ(u) = div (∣∇u∣−1φ(∣∇u∣)∇u) u ∈ C1(M) (2.6)

is called φ-Laplacian. Even for u ∈ C2(M), the vector �eld in brackets

may fail to be C1 where ∇u = 0. In these cases the divergence has to be

interpreted in distributional sense. If φ(t) = t we have the Laplacian;

more generally, if φ(t) = tp−1, p > 1, we have the p-Laplacian ∆pu =
div(∣∇u∣p−2∇u). In case φ(t) = t

(1+t2)α , α > 0, we have the generalized

mean curvature operator

Lφu = div( ∇u
(1 + ∣∇u∣2)α) .

Theorem (1.9) in [PRS1] has been proved with a technique that strictly

uses the linearity of the Laplacian. Hence, in order to achieve an

Omori-Yau maximum principle for non-linear operators, such as the

φ-Laplacian, one must change perspective. We give, below, a result

which guarantees the validity of the q-maximum principle for the φ-

Laplacian. This theorem is stated in [AAR] for a class of nonlinear
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di�erential operators but we will restrict, for the moment, to Lφ.

Theorem 21. [AAR, Theorem B�]

Let (M,g) a Riemannian manifold and φ as above. Let q ∈ C0(M),
q ≥ 0, q > 0 outside some compact set K ⊂ M and 1/q ∈ L1

loc
(M).

Assume that there exists a telescoping exhaustion of relatively compact

open sets {Σj}j∈N such that K ⊂ Σ1, Σ̄j ⊂ Σj+1 for every j ∈ N and, for

any pair Ω1 = Σj1, Ω2 = Σj2, j1 < j2, and for each ε > 0, there exists

γ ∈ C0(M −Ω1) ∩ C1(M −Ω1) with the following properties:

i) γ ≡ 0 on ∂Ω1;

ii) γ > 0 on M −Ω1;

iii) γ ≤ ε on Ω2 −Ω1;

iv) γ(x)→∞ when x→∞;

v) q(x)Lγ ≤ ε on M − Ω̄1 in the weak sense;

vi) ∣∇u∣ < ε on M − Ω̄1.

Then if u ∈ C1(M), u∗ = supu <∞, for each η > 0 we have

inf
Bη

{q(x)Lφu(x)} ≤ 0 in the weak sense,

where Bη ∶= {x ∈M ∣u(x) > u∗ − η and ∣∇u(x)∣ < η}.

Note that condition v) means that

Lφγ ≤
ε

q
weakly on M −Ω1,

that is, ∀ψ ∈ C∞c (M −Ω1), ψ ≥ 0,

∫
M−Ω1

∣∇γ∣−1φ(∣∇γ∣)g(∇γ,∇ψ) + ε
q
ψ ≥ 0.

In the next section we are going to introduce a local version of the WMP
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for a di�erential operator we will use in Chapter 3, the Lorentzian mean

curvature operator. We will also give a geometric su�cient condition

which guarantees the validity of the WMP for the Lorentzian mean

curvature operator. This condition is about volume growth in our man-

ifold. In [PRS1] it is shown that, if the volume growth of geodesic balls

of a Riemannian manifold (M,g) is sub-exponential, the weak max-

imum principle holds on (M,g) for Lφ. Moreover, function u is not

assumed to be bounded from above but, more generally, we require to

have a control on its growth. Namely, we have the following

Theorem 22. [PRS1, Theorem 4.1] Let (M,g) be a complete man-
ifold. Given σ,µ ∈ R let

η = µ − (1 + δ)(1 − σ), (2.7)

and suppose that σ ≥ 0, σ − η > 0. Assume that

lim inf
r→+∞

log Vol(Br)
rσ−η

= d0 <∞. (2.8)

Let u ∈ C2(M) be such that ∣∇u∣−1φ(∣∇u∣)∇u is a vector �eld of class at

least C1 and suppose that

û ∶= lim sup
r(x)→+∞

u(x)
r(x)σ < +∞. (2.9)

Then, given γ > 0 such that

Ωγ ∶= {x ∈M ∣ u(x) > γ} ≠ ∅,

we have

inf
Ωγ

(1 + r(x))µ div(∣∇u∣−1φ(∣∇u∣)∇u) ≤ Ad0 max{û,0}δC(σ, η, δ),

28



with

C(σ, η, δ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if σ = 0

(σ − η)1+δ if σ > 0, η < 0

σδ(σ − η) if σ ≥ 0, η ≥ 0.

2.2 The open weak maximum principle for

the Lorentzian mean curvature opera-

tor

As we will see in Chapter 3, a natural non-linear di�erential operator

arising in the study of spacelike graphs in a Lorentzian manifold is

the Lorentzian mean curvature operator. Let (M,g) be a Riemannian

manifold. For 0 < ω,A, δ < +∞ let ϕ ∈ C0([0, ω)) ∩ C1((0, ω)) satisfying

i) ϕ(0) = 0 (2.10)

ii) ϕ(t) > 0 for 0 < t < ω (2.11)

iii) ϕ(t) ≤ Atδ for 0 < t < ω. (2.12)

We introduce a class of operators which generalize the φ-Laplacian,

namely we de�ne

Lϕ(u) ∶= div(∣∇u∣−1ϕ(∣∇u∣)∇u) in the weak sense, (2.13)

where

u ∈ Aω(M) = {u ∈ Liploc(M) ∶ ∣∇u∣ < ω and ∣∇u∣−1ϕ(∣∇u∣) ∈ L1
loc(M)}.

Operator (2.13) di�ers from the φ-Laplacian because here function ϕ is

not de�ned on the whole real line.
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If ϕ(t) = t/
√

1 − t2 we obtain the Lorentzian mean curvature operator

Lϕu = div
⎛
⎝

∇u√
1 − ∣∇u∣2

⎞
⎠
. (2.14)

Following [AAR], for q(x) ∈ C0(M), q(x) > 0, we say that the q-weak

maximum principle (shortly q-WMP) holds onM for the operator Lϕ if

for each u ∈ Aω(M) bounded from above and for each γ < u∗ = supM u

we have

inf
Ωγ

{q(x)Lϕu} ≤ 0 (2.15)

in the weak sense, where Ωγ = {x ∈ M ∶ u(x) > γ}. In case q(x) is a

positive constant we will simply say that Lϕ satis�es the WMP (the

weak maximum principle). Recall that the validity of (2.15) in the

weak sense means that for any γ < u∗ and for each ε > 0 there exists

ψ ∈ C∞c (Ωγ), ψ ≥ 0 and ψ ≢ 0 such that

−∫
Ωγ

∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇ψ)dv < ε∫
Ωγ

ψ

q
dv.

Now, following [AMR] we introduce a local version of the weak maxi-

mum principle for operators Lϕ.

De�nition 23. Let (M,g) be a Riemannian manifold, q ∈ C0(M), q > 0

and ϕ ∈ C0([0, ω))∩C1((0, ω)), for ω > 0, satisfying structural conditions

(2.10), (2.11) and (2.12).

We say that the open q-weak maximum principle holds on M for the

operator Lϕ if for each f ∈ C0(R), for each open set Ω ⊂M with ∂Ω ≠ ∅
and for each v ∈ C0(Ω) ∩Aω(Ω) satisfying

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i) q(x)Lϕv ≥ f(v) on Ω;

ii) supΩ v < +∞,
(2.16)
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we have that either

sup
Ω
v = sup

∂Ω
v (2.17)

or

f(sup
Ω
v) ≤ 0. (2.18)

Note that i) in (2.16) has to be understood in the weak sense, that

is, for each ψ ∈ C∞c (Ω), ψ ≥ 0,

−∫
Ωγ

∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇ψ) ≥ ∫
Ωγ

f(v)
q(x)ψ.

In our geometric results of Chapter 3 we will make use of the local form

of the principle contained in De�nition 23. Therefore, it is important

showing that this latter is actually equivalent to the classical version.

Theorem 24. In the above assumptions, the validity of the q-WMP for

the operator Lϕ is equivalent to that of the open q-WMP.

Proof. Assume that the q-WMP holds for the operator Lϕ on M and

let Ω, f , v be as above, with v satisfying (2.16). We suppose sup∂Ω v <
supΩ v and we claim f(v∗) ≤ 0. Fix sup∂Ω v < γ < v∗ and de�ne Ωγ ∶=
{x ∈ Ω ∶ v(x) > γ}. In our setting Ωγ ⊂ Ω. Consider the function

u ∶=
⎧⎪⎪⎨⎪⎪⎩

v on Ωγ

γ on M −Ωγ

and observe that u ∈ Aω(M) and that u∗ = supM u = v∗ = supΩ v.

Choose γ < σ < u∗ = v∗. Since we are supposing the validity of the

q-WMP, then for each ε > 0 there exists ψ ∈ C∞c (Ωσ), ψ ≥ 0 and ψ /≡ 0,

such that

−∫
Ωσ

∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇ψ) ≤ ∫
Ωσ

ε

q(x)ψ. (2.19)
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On the other hand, since supp(ψ) ⊂ Ωσ ⊂ Ω, and since we are assuming

q(x)Lφv ≥ f(v) on Ω in the weak sense, we also have that

∫
Ωσ

f(v)
q(x)ψ ≤ −∫

Ωσ
∣∇v∣−1ϕ(∣∇v∣)g(∇v,∇ψ). (2.20)

Note that u = v on Ωσ and therefore from (2.19) and (2.20) we deduce

∫
Ωσ

f(v)
q(x)ψ ≤ ∫

Ωσ

ε

q(x)ψ.

Now, �x ε > 0 and, recalling that f in continuous, consider σ suf-

�ciently close to v∗ so that f(v) > f(v∗) − ε on Ωσ. Hence from the

above we deduce

(f(v∗) − ε)∫
Ωσ

ψ

q(x) ≤ ε∫
Ωσ

ψ

q(x) ,

where ψ depends on the choice of ε and σ. Since ∫Ωσ

ψ
q(x) > 0, we deduce

f(v∗) < 2ε. But the choice of ε is arbitrary, so that f(v∗) ≤ 0.

Assume, now, the validity of the open q-WMP and consider u ∈
Aω(M) bounded above. Fix γ < u∗; we claim that infΩγ{q(x)Lϕu} ≤ 0

in the weak sense. By contradiction, suppose that there exists ε > 0

such that for each ψ ∈ C∞c (Ωγ), ψ ≥ 0

−∫
Ωγ

∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇ψ) > ∫
Ωγ

ε

q(x)ψ.

This means q(x)Lϕu ≥ ε weakly on Ωγ. Note that

γ = sup
∂Ωγ

u < sup
Ωγ

u = u∗ <∞. (2.21)

Applying the open q-WMP with Ω = Ωγ, v = u∣Ωγ
∈ Aω and f = ε,

inequality (2.21) yields the desired contradiction.
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As we see in the �rst Section of the present Chapter, it is worth

�nding some geometric conditions on (M,g) assuring the validity of

weak maximum principle for the operators we are analyzing. To this

aim, we generalize Theorem [PRS1, Theorem 4.1] considering the new

class of operators Lϕ.

Proposition 25. Let (M,g) be a complete Riemannian manifold. As-

sume that

lim inf
r→∞

log VolBr

r1+δ
= d0 < +∞. (2.22)

Let u ∈ Aω(M) such that u∗ ∶= supM u <∞. Then for all γ < u∗ we have

inf
Ωγ
Lϕu ≤ 0 (2.23)

in the weak sense, where Ωγ = {x ∈ M ∶ u(x) > γ}. In other words,

under assumption (2.22) the WMP holds on M for the operator Lϕ.

Proof. We follow the proof of Theorem 1.1 in [RSV] (see also the proof

of Theorem 4.1 in [PRS1]). If ν ∈ R and we set uν ∶= u + ν, we have

Lϕ(uν) = Lϕ(u) in the weak sense, so we can replace u with uν , where

ν > 0 is such that u∗ν > 0. With abuse of notation we are going to omit

the subscript ν.

Fix γ < u∗ and note that Ωt ⊂ Ωs if t > s, so that we may suppose

without loss of generality that γ ≥ 0. Next we let

K ∶= inf
Ωγ
Lϕu

= sup{a ∈ R ∶ Lϕu ≥ a}

= sup{a ∈ R ∶ ∀ψ ∈ C∞c (Ωγ), ψ ≥ 0,−∫
Ωγ

∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇ψ)

≥ a∫
Ωγ
ψ} ,
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and assume by contradiction that K > 0. Observe that, in this case, u

is nonconstant on any connected component of Ωγ.

We �x θ ∈ (1/2,1) and choose R0 > 0 such that BR0 ∩Ωγ ≠ ∅. Given
R > R0, let ψ ∈ C∞(M) be a cut-o� function such that

i) 0 ≤ ψ ≤ 1;

ii) ψ ≡ 1 on BθR;

iii) ψ ≡ 0 on M/BR;

iv)∣∇ψ∣ ≤ 2
R(1−θ) .

Let also ξ ∈ C∞(R) be such that 0 ≤ ξ ≤ 1, supp(ξ) = [γ,+∞) and ξ′ ≥ 0.

Consider the test function

f = ψ1+δξ(u) exp(z) ≥ 0

where z ∶= −q(α − u)r1+δ for some q > 0 and α > u∗ to be chosen later.

Denoting with Ω ∶= Ωγ∩BR, observe that f ∈ Liploc(Ω) and supp(f) ⊂ Ω,

and therefore it is an admissible test function for (2.24). Then we have

−∫
Ω
∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇f) = −∫

Ωγ
∣∇u∣−1ϕ(∣∇u∣)g(∇u,∇f)

≥ K ∫
Ωγ
f =K ∫

Ω
f. (2.24)
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Computing

∇f = (1 + δ)ψδξ(u) exp(z)∇ψ + ψ1+δξ′(u) exp(z)∇u
−(1 + δ)q(1 + r)δψ1+δξ(u) exp(z)(α − u)∇r
+qψ1+δξ(u) exp(z)(1 + r)1+δ∇u

and substituting it into (2.24), using ξ′ ≥ 0 and Cauchy-Schwarz in-

equality, we obtain the estimate

∫
Ω
(−ϕ(∣∇u∣)(1 + δ)ψδξ(u)ez ∣∇ψ∣ + ψ1+δξ(u)ezq(1 + r)1+δB(∣∇u∣, r)) ≤ 0

(2.25)

where

B(∣∇u∣, r) = K

q(1 + r)1+δ
+ ∣∇u∣ϕ(∣∇u∣) − (1 + δ)(α − u)(1 + r)−1ϕ(∣∇u∣)

≥ K

q(1 + r)1+δ
+ 1

A1/δ
ϕ(∣∇u∣)1+1/δ − (1 + δ)α(1 + r)−1ϕ(∣∇u∣)

(2.26)

on Ω, since γ ≥ 0. Observe that in the last inequality we have used that

tϕ(t) ≥ A−1/δϕ(t)1+1/δ,

which follows from the structural condition ϕ(t) ≤ Atδ. At this time we

need to estimate the right hand side of (2.26) so as to have

B(∣∇u∣, r) ≥ Λϕ(∣∇u∣)1+1/δ (2.27)

for some positive constant Λ independent of ∣∇u∣ and r. Towards this
end, we apply Lemma 4.2 in [PRS1] with the choices (following the

notation of the Lemma 4.2): ω = 1/A1/δ, ρ = (K/q)(1 + r)−(1+δ), and
β = α(1 + δ)(1 + r)−1. Applying the Lemma 4.2 with s = ϕ(∣∇u∣) and
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r ≥ 0 �xed, it is easy to verify the validity of (2.27) provided

Λ ≤ 1

A1/δ
− δα

1+1/δq1/δ

K1/δ
. (2.28)

Since the right hand side of the above inequality is independent of r,

for every such Λ (2.27) holds. In particular, if τ ∈ (0,1) and we choose

q = τ δK

Aδδα1+δ
(2.29)

then

Λ = 1 − τ
A1/δ

> 0

and it satis�es (2.28).

We insert now (2.27) into (2.25) to obtain

qΛ

1 + δ ∫Ω
ψ1+δξ(u)ez(1 + r)1+δϕ(∣∇u∣)1+1/δ

≤ ∫
Ω
ψδξ(u)ez ∣∇ψ∣ϕ(∣∇u∣).

Applying Hölder inequality with conjugate exponents 1 + δ and 1 + 1/δ
to the integral on the right hand side and simplifying, we obtain

( qΛ

1 + δ)
1+δ

∫
Ω
ψ1+δξ(u)ez(1 + r)1+δϕ(∣∇u∣)1+1/δ (2.30)

≤ ∫
Ω
ξ(u)ez(1 + r)−δ(1+δ)∣∇ψ∣1+δ.

Recall that Ω = Ωγ ∩BR. By the volume growth assumption (2.22), for

every d > d0 there exists a diverging sequence Rk ↑ +∞ with R1 > 2R0

such that

log VolBRk ≤ dR1+δ
k .

Noting that θRk > Rk/2 > R0, we apply (2.30) with R = Rk, and use
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the bound for ∣∇ψ∣ and the fact that ξ ≤ 1 to get

E = ( qΛ

1 + δ)
1+δ

∫
Ωγ∩BR0

ξ(u)ezϕ(∣∇u∣)1+1/δ ≤

( qΛ

1 + δ)
1+δ

∫
Ωγ∩BR0

ψ1+δξ(u)ez(1 + r)δ(1+δ)ϕ(∣∇u∣)1+1/δ ≤

∫
Ωγ∩BRk

ξ(u)ez(1 + r)−δ(1+δ)∣∇ψ∣1+δ ≤

∫
Ωγ∩(BRk∖BθRk)

ξ(u)ez(1 + r)−δ(1+δ)∣∇ψ∣1+δ ≤

21+δ

(1 + θRk)δ(1+δ)(1 − θ)1+δR1+δ
k
∫

Ωγ∩(BRk∖BθRk)
ez.

It follows from here that

E ≤ CR−(1+δ)2

k ∫
Ωγ∩(BRk∖BθRk)

ez, (2.31)

where C > 0 is a constant independent of k. Now we observe that since

∣∇u∣ /≡ 0 on Ωγ ∩ BR0 , then E > 0. On the other hand, taking into

account that

ez ≤ e−q(α−u∗)(1+θRk)1+δ

on Ωγ ∩(BRk ∖BθRk), inserting this into (2.31) we obtain the inequality

0 < E ≤ CR−(1+δ)2

k exp (dR1+δ
k − q(α − u∗)(1 + θRk)1+δ).

In order for this inequality to hold for every k, we must have

d ≥ q(α − u∗)θ1+δ,

and letting θ → 1,

d ≥ q(α − u∗).

Set α = tu∗, t > 1, and insert the de�nition of q (2.29) in the above
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inequality, solve with respect to K and let τ → 1 to obtain

K ≤ Ad(u∗)δδδ t
1+δ

t − 1
.

Taking into account that

mint>1
t1+δ

t − 1
= (1 + δ)1+δ

δδ

and letting d→ d0 we obtain

K ≤ Ad0(u∗)δ(1 + δ)1+δ.

Now �x ε > 0. As we observed at the beginning of the proof K does

not depend on adding a constant to u, and therefore we can suppose

that u∗ = ε. Since ε is arbitrary, this yields K ≤ 0, contradiction.
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Chapter 3

Height estimates in generalized

Robertson-Walker spacetimes

3.1 Basic tools for Lorentzian geometry

In 1851 Riemann introduced the concept of manifolds, in his doctoral

thesis. He understood what was the right way to generalize Gauss

study on the intrinsic geometry of surfaces in the Euclidean space R3.

Speci�cally, it is desirable to have a measure of in�nitesimal distance

between points. To this aim, each tangent space should be provided

with an inner product.

Einstein's theory of special relativity of 1905 brought out the need for

a further generalization. In prerelativity physics the time interval ∆t

between two events and the spatial interval ∣∆x∣ between two simultane-

ous events have absolute signi�cance. This is no longer valid in special

relativity. In this theory, space and time can be considered as a con-

tinuum (spacetime) composed of events, which can be labeled by four

numbers (t = x0, x1, x2, x3) ∈ R4, giving the points of the space at an in-

stant of time. We assume that there exist preferred families of motion

39



in spacetime, referred to as inertial motions, but among these latter

there are no preferred (inertial) observers. In this setting, the time

interval ∆t and the space interval ∣∆x∣ do not have intrinsic meaning.

However, the spacetime interval between the events (t = x0, x1, x2, x3)
and (t̄ = x̄0, x̄1, x̄2, x̄3) de�ned by

−(x0 − x̄0)2 + (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2 (3.1)

has the same value for all inertial observers, so it represents an intrinsic

property of spacetime. Equation (3.1) suggests that we can consider on

spacetime manifold R4 tensor

η ∶= −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

This symmetric tensor is not a Riemannian metric on R4 since it is not

positive de�nite. Therefore, we need to extend the de�nition of inner

product, substituting the positivity with a weaker request, the nonde-

generacy.

We are going to begin this chapter with a brief survay on the basic tools

for Lorentzian geometry, with the aim of �xing notation and touching

upon the geometric background of our results. Note that the di�er-

ence in metric signature makes no great di�erences in the geometric

treatment of manifolds.

3.1.1 Lorentzian vector spaces

Let V be a real vector space of dimension n.

De�nition 26. A scalar product η is a symmetric nondegenerate bi-

linear form on V . A Lorentzian scalar product is a scalar product of

index 1.
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The nondegeneracy means that for all v ∈ V �xed, η(v,w) = 0 for all

w ∈ V implies v = 0. The index of a bilinear form is the largest integer

that is the dimension of a subspace W < V on which η∣W is negative

de�nite.

For every scalar product η, we can �nd a basis e1, . . . en such that

η(ei, ei) = −1 for i = 1, . . . , k

η(ei, ei) = 1 for i = k + 1, . . . , n

η(ei, ej) = 0 i ≠ j.

On Rn there is a natural Lorentzian scalar product, de�ned by

⟪x, x̄⟫ = x1x̄1 + ⋅ ⋅ ⋅ + xn−1x̄n+1 − xnx̄n.

We refer to (Rn,⟪., .⟫) as the Minkowski space.

Consider now a Lorentzian space (V, η). Note that the product η(v, v)
is not forced to be positive, it can also be negative or even null.

De�nition 27. We de�ne v ∈ V − {0} to be timelike if η(v, v) < 0,

lightlike (or null) if η(v, v) = 0 and spacelike if η(v, v) > 0. Moreover,

we will refer to lightlike and timelike vectors as causal vectors.

For n ≥ 2 the set of timelike vectors consists of two cones. Recall that

a cone is a subset of a vector space that is closed under multiplication

by positive scalars. Choosing a time orientation on V means picking

up one of these two cones. The timelike vectors in this latter are said

to be future pointing, the other ones past pointing. We say that two

timelike vectors v and w have the same time orientation if they stay in

the same cone and this is equivalent to requiring η(v,w) < 0.

Now, consider a subspace W of (V, η). We say that W is

� spacelike if η∣W is positive de�nite;
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� timelike if η∣W is nondegenerate of index 1 (hence Lorentzian if

dim(W ) ≥ 2);

� lightlike if η∣W is degenerate.

Two vectors v,w ∈ V are said to be orthogonal if η(v,w) = 0. For a

subspace W < V we can introduce the subspace

W ⊥ = {v ∈ V ∣ η(v,w) = 0 ∀w ∈ V }.

Nevertheless, we do not refer toW ⊥ as the orthogonal complement ofW

since, unlike the Euclidean case, we do not have in general V =W +W ⊥.

Speci�cally, it can be proved that V = W ⊕W ⊥ if and only if W is

nondegenerate, that is η∣W is nondegenerate.

Lemma 28. If w ∈ V is a timelike vector in a Lorentzian vector space

then ⟨w⟩⊥ is spacelike.

Proof. De�ne ∣w∣ ∶=
√
−η(w,w) and e1 ∶= w/∣w∣. Using a Gram-Schmidt

argument we complete e1 to an orthonormal basis of V , {e1, e2, . . . , en}.
Since the index does not depend on the orthonormal basis we have that

vectors e2, . . . , en are spacelike. Since they span ⟨w⟩⊥ we conclude that
this latter is spacelike.

As for the orthogonal complement, it is worthwhile stressing the

fact that some of the basic results valid for Euclidean scalar products

must be slightly modi�ed in the Lorentzian case. For example, for

timelike vectors we have a reverse Cauchy-Schwarz inequality and a

reverse triangular inequality.

Proposition 29 (Reverse Cauchy-Schwarz inequality). Let η be

a Lorentzian scalar product on a vector space V . For v, w ∈ V timelike

vectors we have

∣η(v,w)∣ ≥ ∣v∣∣w∣, (3.2)

42



where ∣v∣ ∶=
√
−η(v, v) and the equality holds if and only if v and w are

colinear.

Proof. If we decompose w as w = λv + w̄, where λ ∈ R and η(w̄, v) = 0

we have

η(w,w) = λ2η(v, v) + η(w̄, w̄)
η(v,w) = λη(v, v).

Hence

η(v,w)2 = λ2η(v, v)2 = η(v, v)(η(w,w) − η(w̄, w̄)) ≥ η(v, v)η(w,w),

where, in the last inequality, we used the fact that since v is timelike

then w̄ is spacelike. So, we conclude ∣η(v,w)∣ ≥ ∣v∣∣w∣.
Note that the equality holds if and only if η(w̄, w̄) = 0, that is w̄ = 0,

and this is true if and only if w = λv.

Inequality (3.2) allows us to introduce the hyperbolic angle between

two timelike vectors lying in the same timecone.

De�nition 30. Let v,w ∈ (V, η) be two timelike vectors such that

η(v,w) < 0. The hyperbolic angle between v and w is the unique number

θ ≥ 0 such that

η(v,w) = −∣v∣∣w∣Ch(θ). (3.3)

Proposition 31 (Reverse triangular inequality). Let η be a Lorentzian

scalar product on a vector space V . If v, w ∈ V are timelike vectors in

the same cone, we have

∣v + x∣ ≥ ∣v∣ + ∣w∣ (3.4)

and equality holds if and only if v and w are colinear.
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Proof. The assumption on v and w to stay in the same cone gives

η(v,w) < 0. We have

∣v +w∣2 = −η(v +w, v +w) = ∣v∣2 + ∣w∣2 + 2∣η(v,w)∣.

Using the reverse Cauchy-Schwarz inequality we deduce

∣v +w∣2 ≥ ∣v∣2 + ∣w∣2 + 2∣v∣∣w∣ = (∣v∣ + ∣w∣)2,

and equality holds if and only if ∣η(v,w)∣ = ∣v∣∣w∣ and this happens when

v and w are colinear.

In a vector space endowed with a scalar product (V, g), the group

of all distance-preserving endomorphisms (i.e. isometries) is called or-

thogonal group. If M is the matrix associated to g with respect to

some basis of V , the elements of the orthogonal group are transforma-

tions represented by matrix A satisfying ATMA =M . In the Euclidean

space Rn, the orthogonal group O(n) is composed by matrix A such

that ATA = In. In the Minkowski space, the orthogonal group is called

Lorentz group and is denoted by O1(n). A matrix A ∈ Mat(n,R) rep-

resents a Lorentz transformation if and only if ATηA = η, where

η =
⎛
⎝
In−1 0

0 −1

⎞
⎠
.

Lorentz transformations play a central role in special relativity. A mate-

rial body, if subjected to no external forces, undergoes a nonaccelerating

motion, named inertial motion. The �rst postulate of special relativity

(principle of relativity) asserts that the laws of phisics are the same in

all intertial frames of reference. An inertial observer can label each

event of spacetime with four numbers. If observer O labels an event p

with coordinates (t, x, y, z) and O′, for instance, moves with velocity v
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in the x-direction, then the labeling by O′ are the transformed of that

of O by the Lorentz transformation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′ = t−vx

(1−v2)
1
2

x′ = x−vt

(1−v2)
1
2

y′ = y
z′ = z,

where we assume the speed of light to be c = 1. This assumption is due

to the second postulate of special relativity (invariance of c), according

to which the speed of light c has the same value in all inertial frames of

references

3.1.2 Robertson-Walker spacetimes

Special relativity neglects the e�ects of gravitational �elds. Newton's

theory of gravitation is not consistent with special relativity since it

assumes that certain signals trasmit instantaneously.

Einstein's idea, in order to include gravitation in a relativity theory,

was to describe physical quantities by geometrical objects and to ex-

press physical laws as geometric relationships between these objects. In

inertial frames all test particles move along straight lines. These tra-

jectories constitute a preferred family of curves, which are geodesics for

the �at metric in Minkowski space. Analogously, paths of bodies freely

falling in a gravitational �eld can be thought as geodesics for a non-

�at metric. This innovative approach was supported by the equivalence

principle, which asserts that an observer can not distinguish wheather

he is in presence of a uniform gravitational �eld or he is in an acceler-

ating reference frame in absence of gravitational �eld. Hence, the fact

that acceleration imparted to a body is independent of the nature of
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the body suggests to ascribe properties of the gravitational �eld to the

geometric structure of the spacetime.

De�nition 32. A pseudo-Riemannian (or semi-Riemannian) manifold

is a couple (M,g), where M is a smooth manifold and g is a symmet-

ric, non-degenerate (0,2) tensor �eld of constant index, called metric

tensor.

Hence in a pseudo-Riemannian manifold each tangent space is fur-

nished with a scalar product ηp and the index of ηp, ν, does not depend

on the point p ∈M . If ν = 0 M is a Riemannian manifold, if ν = 1 and

dim(M) ≥ 2 M is called Lorentzian manifold.

For tangent vectors to M we use the terminology we introduced in the

previous section. Hence, for example, a tangent vector v ∈ TpM is said

spacelike (resp. timelike, lightlike) if it is spacelike (resp. timelike,

lightlike) in the Lorentzian vector space TpM . Analogously, we already

know what is a time orientation on a Lorentzian vector space, so we can

time-orient each tangent space (TpM,ηp); the problem is how to do this

in a continuous or even smooth way, on our manifold M . Choosing one

of the two timecones on a Lorentzian vector space V is equivalent to

saying that a speci�c timelike vector v ∈ V is future-pointing. So, it is

natural to interpret the smoothness of the choice of a time orientation

on tangent spaces as the smoothness of a representative future-pointing

timelike vector �eld. We are, then, led to the following

De�nition 33. A Lorentzian manifoldM is time-orientable if and only

if there exists a smooth timelike vector �eld globally de�ned on M .

Observe that De�nition 33 is equivalent to its explicitly local ver-

sion. More precisely, consider a function Or such that, for any p ∈M ,

Or(p) is one of the two timecones in TpM . We can say that our choice

Or is smooth if, for any p ∈ M , there exists an open neighborhood Up
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of p and a vector �eld V p ∈ X(Up) such that V p
q ∈ Or(q) for any q ∈ Up.

Obviously, De�nition 33 implies the existence of a smooth choice Or.

Using partition of unity, one can prove that also the converse is true.

Indeed, consider the partition of unity {fp} subordinate to the neigh-

borhoods of points of M with the property discussed above. Vector

�eld Xq ∶= ∑p fpV
p
q is smooth and globally de�ned onM . Since, for any

p, q ∈M , V p
q ∈ Or(q) and fp ≥ 0 it follows that X is timelike.

If (M,g) is a Riemannian manifold and N ⊂M is a submanifold of M ,

the pullback j∗(g) is a Riemannian metric on N , where j ∶ N ↪ M

denotes the inclusion map. However, if (M,η) is more generally a

pseudo-Riemannian manifold and η is inde�nite then j∗(η) might be

degenerate. So, we need the following

De�nition 34. Let (M,η) be a pseudo-Riemannian manifold and N ⊂
M a submanifold. If the pullback j∗(η) is a metric tensor on N , we

call N pseudo-Riemannian submanifold of M .

Let, now, N be a submanifold of a pseudo Riemannian manifold

(M,η). If, for every p ∈ N , TpN has the same causal character as

subspace of TpM , then we say that N itself has that causal charac-

ter. Clearly, pseudo-Riemannian submanifolds can only be spacelike or

timelike and, in general, a submanifold of (M,η) need not have a causal

character. For instance, tangent vectors to a circle in the Minkowski

plane R2
1 are spacelike in two arcs, timelike in two arcs and null in four

points. This is not the case for geodesics. In a pseudo Riemannian

manifold (M,η) (as in Riemannian geometry) a curve γ ∶ I → M is a

geodesic - by de�nition - if its velocity γ′ is parallel, that is ∇γ′γ′ ≡ 0.

We denote by ∇ the Levi-Civita connection of η, de�ned in the same

way as in the Riemannian case. Parallel translation is a linear isometry,

so it preserves causal character of vectors. Therefore a geodesic always

has a causal character.
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Example 35 (The Schwarzschild Half-plane). Let

h(r) = 1 − 2M

r
,

whereM is a positive constant. The Schwarzschild Half-plane PI is the

half-plane {(r, t) ∈ R2∣r > 2M} endowed with Lorentzian metric

ds2 = h−1dr2 − hdt2.

In the Schwarszchild half-plane null geodesics are given by the trans-

formed of

t = s + 2M logs r = s + 2M for s > 0

by isometries (r, t)→ (r,±t + b).
The Schwarzschild halfplane is the essential element used to build up

the simplest relativistic model of space around a star. Its null geodesics

model light rays approaching (or departing) radius 2M .

Our aim, now, is to describe special examples of Lorentzian man-

ifolds, the generalized Robertson-Walker spacetimes, that will be the

geometric framework of our results in this chapter. We start dealing

with classical Robertson-Walker spacetimes.

The purpose of cosmology is to �nd appropriate models of the universe.

More precisely, by cosmological model we mean a four-dimensional,

time-orientable Lorentzian manifold (M,g), called spacetime, where g

obeys a fundamental tensorial equation (Einstein �eld equation)

Gij ∶= Rij −
1

2
Rgij = 8πTij. (3.5)

We denote by Rij the Ricci curvature of g and by R the trace of Rij,

the scalar curvature. The stress-energy tensor Tij describes continuous

matter distribution so that equation (3.5) gives a relationship between
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the geometry of (M,g) (namely, its curvature) and matter. In the large

scale viewpoint one can consider the universe as a perfect �uid whose

particles are galaxies, ignoring the internal structure of these latter. In

this asset, one characterizes the gas by a 4-velocity u (the velocity of an

observer for whom galaxies in his neighborhood have no mean motion),

by a density of mass-energy ρ and by a pressure p. The stress-energy

momentum has the form

Tij = (ρ + p)uiuj + pgij. (3.6)

Cosmologists want to �nd solutions to the Einstein �eld equations con-

sistent with matter distribution of the universe. The main point is how

to choose a good model for the universe. The right approach to the

problem consists of a mixture of coherence with observational data and

theoretical assumptions on the nature of the universe, with a philo-

sophical rather than scienti�cal taste. This may seem to be a uroboric

attitude, but it is in some sense unescapable since we cannot discuss

experimental data without a model and, at the same time, we cannot

construct a signi�cative model without empirical evidences.

Hence we may start observing that there is no theoretical evidence that

we occupy a privileged position in the universe, so that we can think

that the portion of the universe we can observe is a fair sample. This

means that it is natural to assume that the universe is spatially ho-

mogeneous, when viewed on a suitable (large) scale. Analogously, we

suppose the universe to be isotropic, that is we suppose that there are

no preferred directions, so that observations on large scale should yeald

to the same conclusions independently from the direction we choose.

However, despite the philosophical nature of our reasoning above, the

assumptions of the homogeneity and the isotropy of the universe (the so

called cosmological principle) have strong empirical con�rmations. We
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mention the very highly isotropy of x-ray, γ-ray background radiation

and of the cosmic microwave background, a thermal radiation that is

the remnant heat left over by the Big Bang. Regarding the homogene-

ity, it is quite di�cult to test it directly but, as we will observe later,

isotropy around any point implies homogeneity, so the isotropies of the

extragalactic observations represent a con�rmation of homogeneity too.

Now, we want to give a precise mathematical de�nition of homogeneity

and isotropy. Concerning spatial homogeneity, we want to formalize

the idea that, at any instant of time, the universe looks the same ev-

erywhere. In special relativity, the expression at a given instant of time

is ambiguous since there is no universal meaning of simultaneity, so we

should specify which inertial frame we consider. In general relativity,

moreover, there are no global inertial frames so we have to re�ne fur-

ther our de�nition. We replace the concept of a given moment of time

with the more general concept of spacelike hypersurface. At any point

of a spacelike hypersurface there is a local Lorentz frame whose surface

of simultaneity locally coincides with the hypersurface.

De�nition 36. A spacetime (M,g) is said to be spatially homogeneous

if it is foliated by a one-parameter family of spacelike surfaces Σt such

that for each t ∈ R and for any points p, q in Σt there exists an isometry

of the metric g which takes p into q.

Hence, on each Σt, called homogeneity surface, there exists a group

of isometries acting transitively on it. This de�nition implies that at

each time of a hypersurface Σt pressure p, density ρ and the curvature

of the spacetime must be the same.

Regarding the concept of isotropy, observe �rst that the universe cannot

look isotropic to all observers: it can be isotropic only for observers

moving with the cosmological �uid.
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De�nition 37. A spacetime (M,g) is said to be spatially isotropic at

each point if there exists a congruence of timelike curves, with tangents

denoted by u, �lling M and such that, for any p ∈M and s1, s2 ∈ TpM
unit vectors with g(s1, up) = g(s2, up) = 0 (so s1 and s2 are spacelike

vectors) there exists an isometry of (M,g) which leaves p and up �xed

and rotates s1 in s2.

Recall that a congurence of curves in a spacetime (M,g) is the set

of the integral curves of a nonvanishing vector �eld on M . A timelike

curve in aM represents the world line of an observer, that is the trajec-

tory of an observer moving in a spacetime. We will refer to the timelike

curves in De�nition 37 as the isotropic observers.

We remark that De�nition 36 and De�nition 37 are not completely

independent: a spacetime isotropic around any point must be also

homogeneous, while there exist homogeneous anisotropic cosmological

models. Indeed, assume that we can foliate the spacetimeM with com-

plete spacelike hypersurfaces Σt orthogonal to the isotropic observers.

Then, for each t ∈ R and for each p, q ∈ Σt we can consider the geodesic

γ ∶ [0,1]→ Σ connecting p to q. Now, consider the isometry F ∶M →M

that �xes γ(1/2) and send γ′(1/2) to −γ′(1/2). Since F ○ γ must be a

geodesic with the same tangent vector as γ(1 − s) in γ(1/2), due to a

unicity result for geodesics it must be the same curve and so it must

be F (q) = p.
Now we are going to show that the geometry of a spacetime is strongly

in�uenced by the assumption of the cosmological principle. Consider a

homogeneous and isotropic spacetime (M,g) and denote by {Σt}t∈R the

foliation of M with homogeneity hypersurfaces. First we remark that

each Σt is orthogonal to the world line of the isotropic observer (or, if

the isotropic observers are not uniquely determined, one can construct

a family of isotropic observers orthogonal to the homogeneity surfaces).

Then, let h be the Riemannian metric on Σt de�ned by h ∶= j∗(g), where
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j ∶ Σt ↪ M is the inclusion map, and let Rijkl be the Riemann tensor

of h. Contracting the last two indices with the metric

Rij
kl ∶= hrkhtlRijrt,

where hij is de�ned by hijhjk = δik, we obtain, for each p ∈M , a linear

map L ∶ Λ2(T ∗
p Σt)→ Λ2(T ∗

p Σt) de�ned by

L(vijωi ∧ ωj) ∶= Rij
klvklω

i ∧ ωj,

where {ωi}ni=1 is a local orthonormal co-frame in p.

Recall that the metric tensor h induces a natural inner product on

Λ2(T ∗
p Σt)

⟨vijωi ∧ ωj,wklωk ∧ ωl⟩p ∶= hkihljvijwkl. (3.7)

Remark that operator L is a self-adjoint operator on Λ2(T ∗
p Σt) fur-

nished with inner product (3.7). Indeed, for any two 2-forms v =
vijωi ∧ ωj, w = wklωk ∧ ωl we have

⟨Lv,w⟩ = htihsjRij
klvklwts = htihsjhkmhlnRijmnvklwts

= htihsjhkmhlnRmnijvklwts = hkmhlnRmn
tsvklwts

= ⟨v,Lw⟩.

Therefore, there exists a basis of Λ2(T ∗
p Σt) made up of eigenvectors of

L, say e1, e2, e3 associated to the eigenvalues λ1, λ2, λ3 respectively. Due

to the assumption of isotropy, the eigenvalues of L can not be distin-

guished. Indeed, recall that dim(Λ2
p(Σt)) = dim(TpΣt) = 3 so we can

consider a linear isometry between these two spaces. The hypothesis of

isotropy, then, implies that if i, j ∈ {1,2,3}, with i ≠ j, there exists an

52



isometry F of M that �xes p and up and sends ei in ej. So we have

λi = h(Lei, ei) = h(F∗Lei, F∗ei) = h(LF∗ei, F∗ei) = h(Lej, ej) = λj,

where we used the fact that the Riemann operator L commutes with

F∗.

Hence λ1 = λ2 = λ3 =K and

Rij
kl =K(δikδj l − δilδjk). (3.8)

We can repeat the same reasoning in any point p ∈ Σt and we conclude

that equation (3.8) holds on Σt, with K is independent of the point due

to Schur theorem. Therefore Σt is a space form and, since two space

forms with the same value of K are locally isometric, we can classify

it. Namely, if K > 0 Σt is locally isometric to a 3-sphere, if K = 0 Σt to

the �at space R3 and if K < 0 Σt to a three dimensional hyperboloid.

We stress the fact that the isotropy constraint alone implies that we

have only three possibilities for spatial geometry. In special relativity

the cosmological model is a �at universe. Since the 3-sphere is a com-

pact hypersurface without boundary, we refer to the case K > 0 as the

closed model, while if K ≤ 0 we have the open one.

Observe that, until now, we have �xed one of the surfaces Σt, t ∈ R,
and we have obtained conclusions on its geometry. Now, we want to

describe the geometry of the whole spacetime, that is, we want to re-

late to each other the behaviours of the homogeneity surfaces. To this

purpose, we label each surface Σt with the proper time of any of the

isotropic observers, τ ∈ R. Then we denote by ∂τ the tangent vector

�eld u to the isotropic observers and we introduce the scale function

a(τ) that gives the rescaling of metrics of the homogeneity surfaces.

So, we can representM as the di�erential manifoldM = R×Σ endowed
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with metric

g ∶= −dτ 2 + a2(τ)h, (3.9)

where h is a metric on Σ with constant curvature. We denote the

Lorentzian manifold M furnished with metric g by −R ×a Σ, where the

subscipt a indicate that we are modifying the usual product metric with

the scale factor a2 and sign minus reminds that we are considering a

Lorentzian metric. In di�erential geometry these kind of manifolds are

called Lorentzian warped products and one refers to function a as the

warping function.

Hence, we remark that the only assumption of homogeneity and isotropy

yealds to the very speci�c cosmological model −R×aΣ, calledRobertson−
Walker spacetime. These spaces are, then, a good aproximation for

the large-scale geometry of our universe.

In order to study the dynamical evolution of the universe, we should

substitute equation (3.9) in (3.5), where Tij must have a suitable form

in order to describe satisfactory the matter content of the universe. The

general evolution equations for our homogeneous and isotropic model

are

3
ȧ2

a2
= 8πρ − 3k

a2
(3.10)

3
ä

a
= −4π(ρ + 3p), (3.11)

where a is the scale factor introduced in (3.9) and k = 1 for the 3-

sphere, k = 0 for the �at space and k = −1 for the hyperbolic space.

These equations are known as Friedmann-Lemaître equations. From

(3.11) we get ä < 0, provided ρ > 0 and p ≥ 0. This fact means that,

in the homogeneous and isotropic model, universe must always be ex-

panding (ȧ > 0) or contracting (ȧ < 0). Einstein was not satis�ed with
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this striking prediction, since he believed in a static universe. So, he

modi�ed equation (3.5) with the addition of a new term

Gij +Λgij = 8πTij, (3.12)

where Λ is a constant called cosmological constant. This adjustment

yeald static solutions but Hubble's observations in 1929 on the redshifts

of distant galaxies con�rmed the expansion of the universe. So the

introduction of the cosmological constant turned out to be unjusti�ed.

De Sitter and anti-de Sitter spaces are maximally symmetric (with

constant sectional curvature), vacuum solutions (Tij = 0) to Einstein

�eld equations, with respectively positive and negative cosmological

constant Λ.

Consider the hyperboloid

−x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 1

isometrically immersed in the Minkowski space R5
1 endowed with the

metric

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3 + dx2
4.

We refer to this space as the De Sitter space, dS4. It has the topology

of R × S3; indeed we can introduce the coordinate system (t, χ, θ, φ)
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = Sh(t)
x1 = Ch(t) cos(χ)
x2 = Ch(t) sin(χ) cos(θ)
x3 = Ch(t) sin(χ) sin(θ) cos(φ)
x4 = Ch(t) sin(χ) sin(θ) sin(φ).
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In these coordinates the metric has the form

g = −dt2 +Ch2(t){dχ2 + sin2 χ(dθ2 + sin2 θdφ2)},

so that dS4 = −R ×a S3, with a(t) = Ch(t). Hence, De Sitter space is a
special case of Robertson-Walker spacetime.

The anti-de Sitter space can be represented as the hyperboloid

−u2 − v2 + x2 + y2 + z2 = 1

in R5 with the metric induced by

ds2 = −du2 − dv2 + dx2 + dy2 + dz2.

This space has the topology of S1 ×R3 and it is not simply connected.

Its universal covering has the topology of R4 and usually one refers to

this latter as the anti-de Sitter space. The metric induced on this space

is

g = −dt2 + cos2(t)(dχ2 + Sh2(χ)(dθ2 + sin2 θdφ2))

Now, we want to generalize Robertson-Walker spacetimes considering

a �ber with not necessarily constant sectional curvature and of generic

dimension n ≥ 3. Let (Pn, g) be a complete n-dimensional Riemannian

manifold, I ⊆ R an open interval and % ∈ C∞(I) a positive function

(called warping function). We denote by M̄n+1 = −I ×% Pn the di�eren-

tiable manifold I × Pn endowed with the metric

ḡ ∶= −π∗I (dt2) + %2(πI)π∗P(g),

where πI and πP denote the projections onto I and Pn respectively.

We call −I×%Pn generalized Robertson-Walker (GRW) spacetime. Since

we allow Pn not to have constant sectional curvature, GRW spacetimes
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need not be homogeneous. Observe that, as we commented before,

spatial homogeneity seems to be a reasonable assumption in order de-

scribe universe at large scales but, obvioulsy, it is not realistic at smaller

scales.

In any GRW spacetime M̄ , the coordinate vector �eld ∂t is globally

de�ned and timelike, so M̄ is time-orientable. Consider a spacelike

hypersurface F ∶ Σn ↪ M̄ . There exists on Σ a unique timelike nor-

mal vector �eld N with the same orientation as ∂t, that is such that

ḡ(N,∂t) ≤ 0. We will call N the future pointing Gauss map of the hy-

persurface. Due to (3.2) we have ḡ(N,∂t) ≤ −1, so we can introduce

smooth functions θ ≥ 0 and Θ(≤ 0), de�ned by

ḡ(N,∂t) = − cosh(θ) = Θ. (3.13)

By abuse of notation, we will refer both to θ and to Θ as hyperbolic

angle.

Consider, now, the second fundamental form of the immersion A ∶ TΣ→
TΣ and let k1, . . . , kn be its eigenvalues, the principal curvatures of Σ.

The mean curvature of the immersion is de�ned by

H ∶= − 1

n

n

∑
i=1

ki. (3.14)

3.2 Spacelike graphs immersed in Robertson-

Walker spacetimes

The aim of this section is to present some bounds for the mean curvature

of spacelike graphs in GRW spacetimes.

Let (Pn, ⟨, ⟩P) denote a Riemannian manifold of dimension n, I ⊂ R an

open interval and ρ ∈ C∞(I). Given u ∈ C∞(Pn), we denote by Σ(u) the
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graph of u in the GRW spacetime −I ×ρ Pn

Σ(u) ∶= {(u(x), x) ∈ I × Pn∣x ∈ Pn} ⊂ −I ×ρ Pn.

The metric induced on Pn by the Lorentzian metric of the ambient

space via Σ(u) is given by

⟨, ⟩ = −du2 + ρ(u)2⟨, ⟩P.

Assuming the graph to be spacelike means assuming the metric ⟨, ⟩
to be Riemannian and this is equivalent to assuming ∣Du∣2 < %(u)2

everywhere on Pn. We denote by Du the gradient of u in Pn and by

∣Du∣ its norm, both with respect to the metric of Pn.
Introduce the vector �eld

N ∶= 1

%(u)
√
%(u)2 − ∣Du∣2

(%(u)2∂t +Du).

This latter is orthogonal to Σ(u) and it is the future-pointing Gauss

map of the graph. Indeed, N has the same orientation as ∂t

cosh(θ) ∶= −Θ ∶= −⟨N,∂t⟩ =
ρ(u)√

%(u)2 − ∣Du∣2

In particular

sinh(θ) = ∣Du∣√
%(u)2 − ∣Du∣2

(3.15)

The mean curvature of the graph, H(u), corresponding to this choice

of N is given by equation

divP
⎛
⎝

Du

%(u)
√
%(u)2 − ∣Du∣2

⎞
⎠
+ %′(u)√

%(u)2 − ∣Du∣2
(n + ∣Du∣2

%(u)2
) = nH(u).

(3.16)

58



The above equation can be written in the following equivalent form

1

%(u) divP
⎛
⎝

Du√
%(u)2 − ∣Du∣2

⎞
⎠
+ n%′(u)√

%2(u) − ∣Du∣2
= nH(u). (3.17)

To any complete manifold, as Pn, we can associate the so called Cheeger

constant de�ned by

h(Pn) ∶= inf
Ω

Voln−1(∂Ω)
Vol(Ω) ,

where Ω ⊂⊂ Pn ranges over all relatively compact subdomains of Ω.

The geometric constant h(Pn) is related to the following basic spectral

inequality, due to Cheeger

λ1(Pn) ≥
1

4
h(Pn)2,

where λ1(Pn) is the spectral radius of Pn (see Appendix A). P. Buser in

[Bu] found an upper bound for λ1(Pn) in terms of the Cheeger constant:

he showed that if the Ricci tensor of Pn satis�es RicPn ≥ −(n− 1)δ2, for

a δ ≥ 0, then

λ1(Pn) ≤ 2δ(n − 1)h(Pn) + 10h(Pn)2.

Thus λ1(Pn) and h(Pn) can be considered equivalent in some sense,

that is λ1(Pn) = 0 if and only if h(Pn) = 0, under opportune curva-

ture bounds. Hence, one may ask under which geometric conditions

λ1(Pn) = 0; it turns out that if Pn is complete non-compact and it has

subexponential volume growth then λ1(Pn) = 0 (see [CY2], [Br]).

Now we want to give a result, that has been essentially proved by

Salavessa in [S], concerning the maximality of a constant mean curva-

ture spacelike graph Σ(u) in a Lorentzian product −R × Pn, provided
the �ber Pn has vanishing Cheeger constant and Σ(u) has bounded

hyperbolic angle.
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Theorem 38. Let (Pn, ⟨, ⟩) be an n-dimensional Riemannian manifold

with vanishing Cheeger constant and let u ∈ C∞(Pn) be such that Σ(u)
is a spacelike constant mean curvature graph in the Lorentzian product

−R × Pn. Assume the hyperbolic angle to be bounded. Then Σ(u) is

maximal.

Proof. Consider Ω ⊂⊂ Pn a relatively compact domain. The mean cur-

vature equation in a Lorentzian product has the form

divP
⎛
⎝

Du√
1 − ∣Du∣2

⎞
⎠
= nH(u), (3.18)

where divP denotes the divergence operator on the �ber Pn. Integrating
(3.18) on Ω and taking the absolute values, we get

n∣H(u)∣Vol(Ω) =
RRRRRRRRRRR
∫
∂Ω

⟨Du, ν⟩√
1 − ∣Du∣2

RRRRRRRRRRR
≤ Cθ Voln−1(∂Ω),

where ν is the outward-pointing normal on ∂Ω, Cθ ∶= sup∂Ω ∣Sh(θ)∣ and
this latter is �nite because we are assuming the hyperbolic angle to be

bounded. So we get

∣H(u)∣ ≤ Cθ
n

inf
Ω⊂⊂Pn

Voln−1(∂Ω)
Vol(Ω) = 0

and we achieve the maximality of Σ(u).

Before going on, we should spend a few words on the assumption

of the boundedness of Θ. First of all, observe that the boundedness

of the hyperbolic angle is necessary for Theorem 3.2. Indeed, consider

the function u ∶ R2 → R de�ned by u(x, y) =
√

1 + x2 + y2 and denote

by Σ(u) its graph, that is one sheet of the hyperboloid z2 − x2 − y2 = 1

immersed in the Minkowski space R3
1. It is easy to see that for Euclidean
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spaces h(Rn) = 0. Indeed, consider the sequence of balls of radius k,

Bk. We have

Vol(Bk) = ωnkn Voln−1(∂Bk) = nωnkn−1,

where ωn denotes the volume of B1. Hence

0 ≤ h(Rn) ≤ inf
k∈N

Voln−1(∂Bk)
Vol(Bk)

= 0.

The graph Σ(u) is spacelike since

∣Du∣2 = x2 + y2

1 + x2 + y2
< 1.

The hyperbolic angle of Σ(u) is

Θ = 1√
1 − ∣Du∣2

=
√

1 + x2 + y2

and it is not bounded. Computing the mean curvature of the graph,

we get H(u) = 1 ≠ 0. We remark that the only assumption of Theorem

3.2 which is not ful�lled is the boundedness of Θ. Therefore this latter

condition turns out to be necessary; it is desirable to know if it has

also a physical interpretation. In a spacetime (M,g) the concept of

observer is formalized as a future-pointing timelike curve. Often it

su�ces to consider an instantaneous observer, that is a couple (p,X),
where p ∈ M and X ∈ TpM is a future pointing timelike vector in

TpM . Along a spacelike hypersurface Σ ↪ −R ×ρ Pn we can consider

two relevant observers: (p,Np) and (p, ∂t∣p). Computing the Newtonian

velocity of N relative to ∂t, say v, we get ∣v∣ = tanh(θ) and so if Θ is

bounded ∣v∣ does not approach the speed of light in vacuum (see [SW]:

pp. 41-45).
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Now, we want to give an analogous of Theorem 38 for a spacelike graph

in a GRW-spacetime. This result and the following ones in the rest of

the present Chapter are contained in the paper [ARS].

Theorem 39. Let (Pn, ⟨, ⟩P) be an n-dimensional Riemannian manifold

and let u ∈ C∞(Pn), with u ∶ Pn → I = (a, b), be such that Σ(u) is a

spacelike hypersurface of −I ×ρ Pn with bounded hyperbolic angle. We

have

inf
Pn
H ≤ sinh(θ∗)

nρ(u∗) h(P
n) if ρ′ ≤ 0

sup
Pn

H ≥ −sinh(θ∗)
nρ(u∗)

h(Pn) if ρ′ ≥ 0,

where θ∗ = supP θ <∞, u∗ ∶= supu ≤ b and u∗ ∶= inf u ≥ a.
We allow ρ(u∗) and ρ(u∗) to be zero and in these cases we have the

trivial inequalities.

Proof. Consider the case %′ ≤ 0 and let Ω ⊂⊂ Pn be a relatively compact

domain with smooth boundary. Integrating (3.16) over Ω we get

n inf
Ω
H(u)Vol Ω ≤∫

∂Ω

⟨Du, ν⟩
%(u)

√
%(u)2 − ∣Du∣2

+

∫
Ω

%′(u)√
%(u)2 − ∣Du∣2

(n + ∣Du∣2
%(u)2

)

Since %′ ≤ 0 we have %(u) ≥ %(u∗) and

n inf
Ω
H(u)Vol Ω ≤∫

∂Ω

∣Du∣
%(u)

√
%(u)2 − ∣Du∣2

=

∫
∂Ω

sinh θ

%(u) ≤ sinh(θ∗)
%(u∗) Voln−1(∂Ω).
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Therefore, we get

inf
Pn
H(u) ≤ sinh(θ∗)

n%(u∗) inf
Ω⊂⊂Pn

Voln−1(∂Ω)
Vol(Ω) = sinh(θ∗)

n%(u∗) h(P
n).

The case where %′ ≥ 0 follows from a similar argument.

In the case of vanishing Cheeger constant we obtain, as a conse-

quence of Theorem 39, a sign on infPnH and on supPnH, related to the

sign of ρ′.

Corollary 40. Let (Pn, ⟨, ⟩) be an n-dimensional, non-compact, com-

plete Riemannian manifold with vanishing Cheeger constant and let

u ∈ C∞(Pn), with u ∶ P → I = (a, b), be such that Σ(u) is a spacelike

graph in −I ×% Pn with bounded hyperbolic angle. If %′ ≤ 0 and u∗ < b
then infPH ≤ 0. Analogously if %′ ≥ 0 and u∗ > a then supPH ≥ 0.

In the case of Lorentzian product we have ρ ≡ 1 and Theorem 39

becomes

Corollary 41. Let (Pn, ⟨, ⟩P) be an n-dimensional Riemannian mani-

fold and let u ∈ C∞(Pn) such that Σ(u) → −R × Pn is spacelike and has

bounded hyperbolic angle. We have

inf
Pn
H ≤ sinh(θ∗)

n
h(Pn) and

sup
Pn

H ≥ −sinh(θ∗)
n

h(Pn),

where H(u) is the mean curvature of the graph Σ(u) and θ∗ = supP θ.

Observe that in the case of constant mean curvature we recover

Salavessa's result Theorem 38.

Theorem 39 can be generalized to the case of spacelike hypersurfaces,

not necessarily graphs, as follows.
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Theorem 42. Let F ∶ Σn → −I ×% Pn be a complete, non-compact

spacelike hypersurface for which the hyperbolic angle is bounded, θ∗ ∶=
supΣ θ <∞. If %′ ≤ 0 then

inf
Σ
H ≤ sinh θ∗

n
hΣ,

where hΣ denotes the Cheeger constant of Σ.

Analogously, if %′ ≥ 0 then

sup
Σ
H ≥ −sinh(θ∗)

n
hΣ.

Proof. Consider the height function h = πI ○ F ∶ Σ → I ⊂ R, whose
gradient is given by

∇h = −∂t −ΘN = −∂t + cosh θN.

In particular,

∣∇h∣2 = Θ2 − 1 = sinh2 θ.

Observe that

∇X∇h = −
%′(h)
%(h) (⟨X,∇h⟩∇h +X) +ΘAX

for every X ∈ TΣ. Therefore,

∆h = −%
′(h)
%(h) (∣∇h∣2 + n) − nΘH. (3.19)

Consider the case where %′ ≤ 0. Then from the above we obtain

∆h ≥ −nΘH = n cosh θH.

If infΣH < 0 there is nothing to prove. So, without loss of generality
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we can assume that infΣH ≥ 0. Fix Ω ⊂⊂ Σ a relatively compact

domain with smooth boundary. Integrating over Ω and using divergence

theorem we obtain

n inf
Ω
H Vol(Ω) ≤ ∫

Ω
nH cosh θ ≤ ∫

Ω
∆h ≤ ∫

∂Ω
∣∇h∣ ≤ sinh θ∗Voln−1(∂Ω).

Therefore,

inf
Σ
H ≤ sinh θ∗

n
hΣ.

The case where %′ ≥ 0 is obtained in a a similar way.

As a consequence we get

Corollary 43. Let F ∶ Σn → −R × Pn be a complete, non-compact,

constant mean curvature spacelike hypersurface with bounded hyperbolic

angle. If Σn has zero Cheeger constant then it is maximal, that is H = 0.

Now, in the next result, we will use the open version of the weak

maximum principle we introduced in Chapter 2, an analytic tool with

interesting geometric applications. Namely, in the statement of the

next result we will assume the validity on the Riemannian manifold

(Pn, ⟨, ⟩P) of the weak maximum principle for the Lorentzian mean cur-

vature operator

Lv ∶= divP
⎛
⎝

Dv√
1 − ∣Dv∣2

⎞
⎠
,

with v in the class

A1(P) = {v ∈ Liploc(P) ∶ ∣Dv∣ < 1 and (1 − ∣Dv∣2)− 1
2 ∈ L1

loc(P)}.

According to Proposition 25 of Chapter 2 this is guaranteed by the

volume growth condition

lim inf
r→∞

log VolBr

r2
< +∞. (3.20)
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In terms of curvature, note that condition (3.20) is implied by

RicP ≥ −c(1 + r2)⟨, ⟩P

for some constant c > 0.

We achieve a height estimate for an entire maximal graph in a GRW

spacetime.

Theorem 44. Consider a generalized Robertson-Walker spacetime −I×%
Pn, and assume on Pn the validity of the weak maximum principle for

the Lorentzian mean curvature operator. Let Σ(u) be an entire space-

like maximal graph in −I ×% Pn, with I = (a, b), −∞ ≤ a < b ≤ +∞, which

is not a slice. Then

either u∗ = b or u∗ ≤ inf{λ ∈ I ∶ %′(t) < 0 on [λ, b)}. (3.21)

Similarly,

either u∗ = a or u∗ ≥ sup{µ ∈ I ∶ %′(t) > 0 on (a,µ]}. (3.22)

Proof. Let us prove (3.21). The proof of (3.22) is analogous. Suppose

that u∗ < b and, by contradiction, assume that

u∗ > inf{λ ∈ I ∶ %′(t) < 0 on [λ, b)}.

Choose λ < u∗ such that %′(t) < 0 on [λ, b) and su�ciently near to u∗

so that if Λλ = {x ∈ Σ ∶ u(x) > λ}, then ∂Λλ ≠ ∅. We �x an origin o ∈ Pn
and for u0 ∶= u(o) we consider the function

ψ(s) ∶= ∫
s

u0

dt

%(t) , ψ′ = 1

%
> 0.

Setting v(x) = ψ(u(x)), a calculation from (3.17) with H = 0 shows
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that

divP
⎛
⎝

Dv√
1 − ∣Dv∣2

⎞
⎠
= −n%

′(ψ−1(v))√
1 − ∣Dv∣2

.

Let γ = ψ(λ) and observe that

Ωγ = {x ∈ Σ ∶ v(x) > γ} = {x ∈ Σ ∶ u(x) > λ} = Λλ.

Since %′(ψ−1(v)) < 0 on Ωγ, we have

divP
⎛
⎝

Dv√
1 − ∣Dv∣2

⎞
⎠
≥ −n%′(ψ−1(v)) on Ωγ.

Now observe that

sup
Ωγ

v = ψ(u∗) > γ = sup
∂Ωγ

v.

Therefore, by the open form of the weak maximum principle we con-

clude that

−n%′(u∗) ≤ 0,

which is a contradiction.

In the special case where the graph Σ(u) is contained in a slab where
% has only one stationary point and this latter is a maximum, as an

application of Theorem 44 we have a nice rigidity result.

Corollary 45. Consider a generalized Robertson-Walker spacetime −I×%
Pn, and assume on Pn the validity of the weak maximum principle for

the Lorentzian mean curvature operator. For a, b ∈ I, a < b, let

(a, b) × Pn = {(t, x) ∶ a < t < b, x ∈ Pn}

be an open slab in −I ×%Pn, and assume that there exists t0 ∈ (a, b) with
the property that %′(t) > 0 on [a, t0) and %′(t) < 0 on (t0, b]. Then the

67



only entire maximal graph contained in (a, b) × Pn is the slice u ≡ t0.

Proof. Choose ε > 0 su�ciently small such that %′(t) > 0 on (a − ε, t0)
and %′(t) < 0 on (t0, b+ε). Set α = a−ε and β = b+ε, and let J = (α,β).
By contradicion, suppose that Σ(u) is not a slice. By applying Theorem
44 to the generalized Robertson-Walker spacetime −J ×% Pn and taking

into account that u∗ < b and u∗ > a we conclude that

u∗ ≤ t0 ≤ u∗.

That is u ≡ t0, contradiction. Therefore Σ(u) must be a maximal slice

in the slab (a, b)×Pn and the only maximal slice contained in that slice

is u ≡ t0

In the next result we give a height estimate for spacelike graphs

Σ(u) which are not necessarily maximal but whose mean curvature

satis�es infH ≤ 0. This result is achieved using again the open form of

the weak maximum principle for Lorentzian mean curvature operator.

Theorem 46. Let (Pn, ⟨, ⟩P) be an n-dimensional Riemannian manifold

and assume on it the validity of the WMP for the Lorentzian mean

curvature operator. Consider u ∈ C∞(Pn) bounded above. Assume the

graph Σ(u) to be a spacelike hypersurface of −I ×% Pn such that H∗ ∶=
infΣ(u)H ≤ 0.

Then Σ(u) is a slice Pu0 with H(u0) = H∗ ≡ H or H(u∗) ≥ H∗, with

u∗ ∶= supu.

Proof. If Σ(u) is the slice Pu0 then, since Du ≡ 0, from (3.17) it follows

directly H(u0) = H∗ ≡ H. So, assume u non-constant. We reason by

contradiction and we suppose H(u∗) <H∗.

De�ne

Ωγ = {x ∈ Pn ∶ u(x) > γ}

68



having chosen γ < u∗ such that ∂Ωγ ≠ ∅ and H(u) < H∗ on Ωγ. Note

that this is always possible since H is continuous.

Reasoning as in Theorem 44, we consider the function

v(x) ∶= ψ(u(x)) = ∫
u(x)

u0

ds

%(s) .

Then from (3.17), function v satis�es

div
⎛
⎝

Dv√
1 − ∣Dv∣2

⎞
⎠
≥ n%(u)

⎛
⎝
H∗ −

H(u)√
1 − ∣Dv∣2

⎞
⎠

≥ n%(u)(H∗ −H(u)) ≥ C(H∗ −H(ψ−1(v))).

on Ωγ, where C ∶= nmin[γ,u∗] % and we have used the fact that H(u) <
H∗ on Ωγ.

Since ψ is strictly increasing,

sup
Ωγ

v = v∗ = ψ(u∗) > ψ(γ) = sup
Ωγ

v.

Then, because of the open form of the WMP we have

H∗ −H(ψ−1(v∗)) =H∗ −H(u∗) ≤ 0,

contradicting the fact that H∗ −H(u∗) > 0.

We comment the fact that in Theorem 46 conclusion H(u∗) ≥ H∗

gives interesting informations only if H(u∗) < 0, that is %′(u∗) < 0.
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3.3 Height estimates for spacelike hypersur-

faces

Let F ∶ Σ → −I ×% Pn be a spacelike hypersurface and denote with

A the second fundamental form of the immersion with respect to the

future-pointing Gauss map N . We are now going to de�ne some di�er-

ential operators which will be the key tool in the proof of our results in

this section. Recall that the eigenvalues of A, k1, . . . , kn, are the prin-

cipal curvatures of the hypersurface and their normalized elementary

symmetric functions

Hk ∶=
(−1)k
(n
k
) ∑

1≤i1<⋅⋅⋅<ik≤n

ki1 ....kik

de�ne the future k-mean curvatures of the immersion. The Newton

tensors Pk ∶ TΣ → TΣ, k = 0, . . . , n, associated to the immersion F are

are inductively de�ned by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P0 ∶= I
Pk ∶= (n

k
)HkI +A ○ Pk−1.

The trace of Pk is TrPk = ckHk, where ck ∶= (n − k)(nk) = (k + 1)( n
k+1

).
We can now de�ne, via the Newton tensors, the second order linear

di�erential operators

Lk ∶= C∞(Σ)→ C∞(Σ),

associated to each Pk, by

Lku = Tr(Pk ○ hess(u)).
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Note that Lk is elliptic if and only if Pk is positive de�nite. We remark

that for spacelike hypersurfaces a su�cient condition to guarantee the

ellipticity of Lj for all 1 ≤ j ≤ k is the existence of an elliptic point jointly
with the positivity of Hk+1, for some 1 ≤ k ≤ n − 1 (see [AC1, Section

3]). We introduce also, for 2 ≤ k ≤ n, opportune linear combinations of

operators Li

Lk−1 =
k−1

∑
i=0

ck−1

ci
H(h)k−1−i(−Θ)iLi = Tr(Pk−1 ○ hess),

where

Pk−1 =
k−1

∑
i=0

ck−1

ci
H(h)k−1−i(−Θ)iPi.

Our aim is, now, to apply operators Lk and Lk on an appropriate func-

tion of h, the height of points of Σ, and to derive interesting geometric

consequences of the validity of the open weak maximum principle for

Lk. For the �rst point we refer to [AC1] and [AIR] and we recall

Proposition 47. Let F ∶ Σn → −I ×%Pn be a spacelike hypersurface and

let σ be de�ned on I by σ(t) = ∫
t

t0
%(s)ds, for some �xed t0 ∈ I. Then

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lkh = −H(h)(ckHk + ⟨Pk∇h,∇h⟩) −ΘckHk+1

Lkσ(h) = −ck(%′(h)Hk +Θ%(h)Hk+1),

where Θ = ⟨N,∂t⟩.

From Proposition 47 one obtains

Lk−1σ(h) = −ck−1%(h)(H(h)k − (−Θ)kHk),
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for 2 ≤ k ≤ n. Indeed, observe that, when k = 2,

L1 = (n − 1)H(h)∆ −ΘL1.

Therefore, Proposition 47 implies directly

L1σ(h) = −c1%(h)(H(h)2 − (−Θ)2H2).

For the general case, proceeding by induction we get

Lk−1σ(h) =
ck−1

ck−2

H′(h)
k−2

∑
i=0

ck−2

ci
H′(h)k−2−i(−Θ)iLiσ(h)

+ (−Θ)k−1Lk−1σ(h)

=ck−1

ck−2

H′(h)Lk−2σ(h) + (−Θ)k−1Lk−1σ(h)

= − ck−1%(h)H′(h)k + ck−1ρ(h)H′(h)(−Θ)k−1Hk−1

− ck−1%(h) (H′(h)(−Θ)k−1Hk−1 − (−Θ)kHk)
= − ck−1%(h) (H′(h)k − (−Θ)kHk) .

Now, we start with an observation on the sign of H analogous to Corol-

lary 40.

Proposition 48. Consider F ∶ Σn → −I ×% Pn a spacelike hypersurface,

where I = (a, b) with −∞ ≤ a < b ≤ +∞, and suppose the validity of

the WMP on Σ for the Laplacian. If %′ ≤ 0 and h∗ < b then H∗ ≤ 0;

similarly, if %′ ≥ 0 and h∗ > a then H∗ ≥ 0.

Proof. We focus our attention on the �rst case, %′ ≤ 0. If h is constant

then there is nothing to prove because, in this case, Σ is a slice {h∗}×P
with constant mean curvature H =H∗ = H(h∗) ≤ 0. If h is non-constant

we reason by contradiction and assume that H∗ > 0. Let γ < h∗ such
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that ∂Ωγ ≠ ∅, where

Ωγ = {x ∈ Σ ∶ h(x) > γ}.

Now, recall that h satis�es the equation

∆h = −%
′(h)
%(h) (n + ∣∇h∣2) − nΘH,

so that, since %′ ≤ 0, we get

∆h ≥ −nΘH ≥ nH ≥ nH∗ > 0.

Hence applying the open WMP on Ωγ we get a contradiction, since

h∗ = supΩγ h > sup∂Ωγ h = γ.
The case where %′ ≥ 0 follows in a similar way.

Now, we will give some height estimates for spacelike hypersurfaces

with constant k mean curvature Hk in a generalized Robertson-Walker

spacetime. These estimates are related to those discussed in Chapter

1. In that context, the authors assumed the timelike (TCC) or the

null (NCC) convergence condition on the ambient space. We recall

that a spacetime obeys the TCC if its Ricci curvature is nonnegative

on timelike directions, while it satis�es the NCC if its Ricci curva-

ture is nonnegative on lightlike directions. The �rst condition implies

the second one, due to continuity. One can prove that a generalized

Robertson-Walker spacetime −I ×% Pn obeys the TCC if and only if

RicP ≥ (n − 1) sup
I

(log(%)′′%2)⟨, ⟩P (3.23)

and

%′′ ≤ 0, (3.24)
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where RicP and ⟨, ⟩P are the Ricci and the metric tensors of the Rieman-

nian factor. On the other hand, NCC is equivalent to (3.23). In what

follows we will deal with the more general condition H′ = (log %)′′ ≤ 0.

We start with an estimate that generalize Theorem 46 to the case of

hypersurfaces (not necessarily graphs) and of higher order mean curva-

tures.

Theorem 49. Let F ∶ Σn → −I ×% Pn, I = (a, b) with −∞ ≤ a < b ≤ +∞,

be a spacelike hypersurface with non-zero constant k-mean curvature for

some 2 ≤ k ≤ n and h∗ < b. Assume the existence of an elliptic point

with respect to the future pointing Gauss map and the validity on Σ of

the WMP for the operator Lk−1. If H ≥ 0 and H′ ≤ 0, then

H(h∗)k ≥Hk. (3.25)

In the proof of Theorem 49 we will use the following particular case

of Theorem 2.5 in [AMR] for trace operators, that are operators of the

form

LT (u) = Tr(T ○ hess(u)),

where T is a positive de�nite, symmetric endomorphism on TM .

Theorem 50. The weak maximum principle holds on M for the oper-

ator LT if and only if for each f ∈ C0(R), for each open set Ω ⊂M with

∂Ω ≠ ∅ and for each v ∈ C0(Ω̄) ∩C1(Ω) satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i) LTv ≥ f(v) on Ω

ii) supΩ v < +∞,
(3.26)

we have that either

sup
Ω
v = sup

∂Ω
(3.27)
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or

f (sup
Ω
v) ≤ 0. (3.28)

We remark that the existence of an elliptic point on Σ and the fact

that Hk is a non-zero constant imply that Hk > 0. Hence Pj is positive
de�nite for all 1 ≤ j < k−1. Since H(h) > 0 and Θ ≤ −1 < 0 we have that

Pk−1 itself is positive de�nite and, equivalently, operator Lk is elliptic.

Proof. If h is constant then there is nothing to prove because, in this

case, Σ is a slice {h∗}×P with constant k-mean curvature Hk = H(h∗)k.
If h is non-constant we reason by contradiction and assume thatH(h∗)k <
Hk. Let γ < h∗ be such that ∂Ωγ ≠ ∅ and H(γ)k <Hk, where

Ωγ = {x ∈ Σ ∶ h(x) > γ}.

De�ne v ∶= σ(h), where σ(t) ∶= ∫
t

t0
%(s)ds. Note that, since σ is an

increasing function, σ(h)∗ = σ(h∗) < +∞.

Recalling that H is non-increasing and Θ ≤ −1 we have

H(h)k − (−Θ)kHk ≤ H(γ)k −Hk on Ωγ.

Therefore, since % is non-decreasing and (H(γ)k −Hk) < 0, we get

Lk−1v = −ck−1%(h)(H(h)k − (−Θ)kHk)
≥ −ck−1%(h)(H(γ)k −Hk)
≥ −ck−1%(γ)(H(γ)k −Hk) > 0

on Ωγ, with supΩγ v < +∞. Observe that

σ(h∗) = sup
Ωγ

v > sup
∂Ωγ

v = σ(γ).

Then, applying Theorem 50 on Ωγ to the elliptic trace operator Lk−1,
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with f ≡ −ck−1%(γ)(H(γ)k −Hk), we get

−ck−1%(γ)(H(γ)k −Hk) ≤ 0

which is a contradiction.

Now, we will consider the case % ≡ 1, that is the case of Riemannian

products. We are going to give, �rst, a height estimate for open subsets

of stochastically complete spacelike CMC hypersurfaces immersed in

−I × Pn. We assume a curvature bound on the Riemannian factor,

namely RicP ≥ −nα, and we consider planar boundary open subsets

Ω contained in a slab. Moreover, we will assume the square of the

hyperbolic angle on Ω bounded from above by a constant depending on

the mean curvature of Σ and the lower bound of RicP.

Theorem 51. Let F ∶ Σn → −R×Pn be a stochastically complete space-

like hypersurface with constant mean curvature H > 0. Suppose that for

some α > 0

RicP ≥ −nα. (3.29)

Let Ω ⊂ Σ be an open set with ∂Ω ≠ ∅ for which F (Ω) is contained in

a slab and F (∂Ω) ⊂ {0} × Pn. Assume

β2 = sup
Ω

Θ2 < α +H
2

α
. (3.30)

Then

F (Ω) ⊂ [ (1 − β)H
H2 − α(β2 − 1) ,0] × Pn. (3.31)

Proof. If β = 1 then there is nothing to prove because, in this case,

Θ ≡ −1 is constant on Ω, or equivalently h is constant on Ω. Thus,

F (Ω) is contained in the slice {0} × P.
Let β > 1. From (3.30), we can choose δ > 0 su�ciently small such
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that

(α + δ)(β2 − 1) <H2.

We consider the function

ψδ ∶= φ −
α + δ
H

(β2 − 1)h = Θ + H
2 − (α + δ)(β2 − 1)

H
h,

where φ ∶= Θ +Hh. From Proposition 47 (with k = 0) we know that

∆h = −nΘH,

and by equation (8.10) in [AC1] we also have that

∆Θ = Θ∣A∣2 +Θ RicP(N∗,N∗),

where N∗ denotes the projection of N onto the �ber Pn. Therefore,

using ∣A∣2 = n2H2 − n(n − 1)H2 we obtain

∆ψδ = Θ{n(n−1)(H2 −H2)+RicP(N∗,N∗)+n(α+ δ)(β2 −1)}. (3.32)

From (3.29),

RicP(N∗,N∗) ≥ −nα∣N∗∣2 = −nα(Θ2 − 1) ≥ −nα(β2 − 1) on Ω.

Thus using the basic inequality H2 ≥H2, (3.32) implies

∆ψδ ≤ nΘδ(β2 − 1) ≤ −nδ(β2 − 1) < 0 on Ω,

where the last inequality is due to β > 1. We de�ne w = ψδ ∣Ω. Since
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F (Ω) is contained in a slab we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆w ≤ −nδ(β2 − 1) on Ω;

infΩw > −∞,

Stochastic completeness of Σ and Theorem 24 give

inf
Ω
w = inf

∂Ω
w.

By assumption F (∂Ω) ⊂ {0} × Pn and thus h ≡ 0 on ∂Ω, so that w =
ψδ = Θ ≥ −β on ∂Ω. We then have

−β ≤ Θ + H
2 − (α + δ)(β2 − 1)

H
h ≤ −1 + H

2 − (α + δ)(β2 − 1)
H

h.

That is, dividing by the positive quantity H2 − (α + δ)(β2 − 1),

h ≥ (1 − β)H
H2 − (α + δ)(β2 − 1) .

Taking the limit as δ ↓ 0 we deduce

h ≥ (1 − β)H
H2 − α(β2 − 1) .

On the other hand

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆h = −nHΘ ≥ nH > 0;

supΩ h < +∞.

Using again Theorem 24 in Chapter 2 we deduce supΩ h = sup∂Ω h = 0,

that is h ≤ 0 on Ω. This completes the proof of the theorem.

We remark that in Theorem 51 what we need is that H has a sign,
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not necessarily H > 0. Indeed, in case H < 0 we may replace (3.31) with

F (Ω) ⊂ [0,
(1 − β)H

H2 − α(β2 − 1)] × Pn.

The proof is analogous, substituting ψδ with −ψδ.
Moreover, in Theorem 51 we assume RicP ≥ −nα with α > 0. In case

RicR ≥ 0, we can not use α = 0 in the Theorem because (3.30) does

not make sense. We observe, now, that a limit reasosing will allow us

to substitute, in this asset, (3.30) with supΩ ∣Θ∣ < ∞. Indeed, we can

consider α̂ su�ciently small so that (3.30) holds with α ∶= α̂. Then,

letting α̂ ↓ 0 we obtain

Corollary 52. Let F ∶ Σn → −R×Pn be a stochastically complete space-
like hypersurface with constant mean curvature H > 0. Suppose that

RicP ≥ 0. (3.33)

Let Ω ⊂ Σ be an open set with ∂Ω ≠ ∅ for which F (Ω) is contained in

a slab and F (∂Ω) ⊂ {0} × Pn, and assume

β = sup
Ω

∣Θ∣ < +∞. (3.34)

Then

F (Ω) ⊂ [1 − β
H

,0] × Pn. (3.35)

In the following Theorem we will give a geometric condition guar-

anteeing stochastic completeness of Σ

Theorem 53. Let F ∶ Σn → −R × Pn be a complete spacelike hyper-

surface with constant mean curvature H > 0. Assume that the height

function h = πR ○ F ∶ Σ→ R satis�es

lim
x→∞

h(x) = −∞.
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Suppose that for some α > 0

RicP ≥ −nα. (3.36)

Let Ω ⊂ Σ be a relatively compact open set with ∂Ω ≠ ∅ such that

F (∂Ω) ⊂ {0} × Pn. Assume

β2 = sup
Ω

Θ2 < α +H
2

α
. (3.37)

Then

F (Ω) ⊂ [ (1 − β)H
H2 − α(β2 − 1) ,0] × Pn. (3.38)

Proof. We only have to show that condition limx→∞ h(x) = −∞ im-

plies the validity of the WMP on Σ for the Laplacian and then apply

Theorem 51. Towards this end we let γ = −h so that it satis�es

∆γ = nΘH ≤ −nH < 0

and

γ(x)→ +∞ as x→∞.

We then apply Theorem A of [AAR] to get the desired conclusion.

Now, we want to generalize Theorem 51 to the case of higher order

mean curvatures. We will substitute the bound on Ricci tensor of Pn

with an analogous bound on the sectional curvature and the stochastic

completeness with the validity of the weak maximum principle for an

opportune Newton operator.

Theorem 54. Let F ∶ Σ → −R × Pn be an immersed hypersurface with

constant, non-zero k-mean curvature Hk, for some k = 2, . . . , n and with
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an elliptic point with respect to the future-pointing Gauss map. Suppose

that the sectional curvature of Pn satis�es

KPn > −α,

for some α > 0 and assume the validity of the WMP for the operator

Lk−1 on Σ. Let Ω ⊂ Σ be an open set with ∂Ω ≠ ∅ for which F (Ω) is

contained in a slab and F (∂Ω) ⊂ {0} × Pn. Assume

β2 = sup
Ω

Θ2 < αH
∗
k−1 +H

(k+1)/k
k

αH∗
k−1

,

where H∗
k−1 ∶= supΩHk−1. Then

F (Ω) ⊆
⎡⎢⎢⎢⎢⎣

(1 − β)Hk

H
k+1
k

k − α(β2 − 1)H∗
k−1

,0

⎤⎥⎥⎥⎥⎦
.

Observe that, under our assumptions, H∗
k−1 ∶= supΩHk−1 > 0. In

fact, the existence of an elliptic point on Σ and the fact that Hk is a

non-zero constant imply that Hk > 0. Then, by Lemma 3.3 in [AC1],

Pk−1 is positive de�nite and, in particular, Hk−1(x) > 0 for every x ∈ Σ.

Proof. As in the proof of Theorem 51 we may assume that β > 1.

Otherwise, F (Ω) is contained in the slice {0}×Pn and there is nothing

to prove.

Let us consider the function φ ∶=H
1
k

k h +Θ. We know that

Lk−1h = −ck−1ΘHk. (3.39)
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On the other hand Hk is constant, so by Corollary 8.5 in [AC1] we have

Lk−1Θ = (n
k
)(nH1Hk − (n − k)Hk+1)Θ

+Θ
n

∑
i=1

µk−1,iKP(N∗ ∧E∗
i )∣N∗ ∧E∗

i ∣2, (3.40)

where {Ei}n1 is a local orthonormal frame that diagonalizes Pk−1, the

µk−1,i's are the eigenvalues of this latter and star denotes projection

onto Pn. We then get

Lk−1φ =(
n

k
)(nH1Hk − (n − k)Hk+1 − kH

k+1
k

k )Θ (3.41)

+Θ
n

∑
i=1

µk−1,iKP(N∗ ∧E∗
i )∣N∗ ∧E∗

i ∣2. (3.42)

Using Gårding inequalities we obtain

H1Hk ≥H
k+1
k

k ,

and therefore

nH1Hk − (n − k)Hk+1 − kH
k+1
k

k ≥ (n − k)(H
k+1
k

k −Hk+1) ≥ 0. (3.43)

From the decompositions

N = N∗ − ⟨N,∂t⟩∂t, Ei = E∗
i − ⟨Ei, ∂t⟩∂t, and ∂t = −∇h − ⟨N,∂t⟩N,

it follows easily that

∣E∗
i ∧N∗∣2 = ∣∇h∣2 − ⟨Ei,∇h⟩2.

In particular,

∣E∗
i ∧N∗∣2 ≤ ∣∇h∣2 = Θ2 − 1.
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Now, recall that the existence of an elliptic point on Σ and the

assumption that Hk is a non-zero constant imply that Hk > 0 and Pk−1

is positive de�nite. So, using this latter fact and the assumption on

KP, we have

µk−1,iKP(N∗ ∧E∗
i )∣N∗ ∧E∗

i ∣2 ≥ −αµk−1,i(Θ2 − 1). (3.44)

Inserting (3.43) and (3.44) into (3.41), we estimate

Lk−1φ ≤ −Θα(Θ2 − 1)Tr(Pk−1) = −Θα(Θ2 − 1)ck−1Hk−1. (3.45)

In particular

Lk−1φ ≤ −Θα(β2 − 1)ck−1Hk−1 on Ω. (3.46)

Now, choose δ > 0 satisfying

(αH∗
k−1 + δ)(β2 − 1) <H

k+1
k

k

and de�ne

ψδ = φ − αH
∗
k−1 + δ
Hk

(β2 − 1)h

= Θ + H
k+1
k

k − (αH∗
k−1 + δ)(β2 − 1)
Hk

h

We let w = ψδ ∣Ω. Using (3.39) and (3.46) we obtain

Lk−1w ≤ ck−1(β2 − 1)Θ{α(H∗
k−1 −Hk−1) + δ}

≤ ck−1(β2 − 1)Θδ ≤ −ck−1(β2 − 1)δ < 0

on Ω, where the last inequality is due to β > 1. Since F (Ω) is contained
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in a slab we also have

inf
Ω
w > −∞.

Using Theorem 50 for the elliptic trace operator Lk−1, we deduce

inf
Ω
w = inf

∂Ω
w.

Therefore,

− 1 + H
k+1
k

k − (αH∗
k−1 + δ)(β2 − 1)
Hk

h

≥ Θ + H
k+1
k

k − (αH∗
k−1 + δ)(β2 − 1)
Hk

h

≥ −β,

and letting δ → 0 we �nally obtain

h ≥ (1 − β)Hk

H
k+1
k

k − α(β2 − 1)H∗
k−1

on Ω, (3.47)

since H
k+1
k

k − α(β2 − 1)H∗
k−1 > 0. On the other hand, by (3.39) we also

have ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lk−1h = −ck−1ΘHk ≥ ck−1Hk > 0 on Ω

supΩ h < +∞.

Reasoning as above we deduce

sup
Ω
h = sup

∂Ω
h,

that implies h ≤ 0 and, combining this inequality with (3.47), we get

the desired conclusion.
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Finally, we conclude with a geometric condition that guarantees the

validity of the weak maximum principle for the operator Lk−1 on Σ.

Theorem 55. Let F ∶ Σ → −R × Pn be an immersed hypersurface with

constant, non-zero k-mean curvature Hk, for some k = 2, . . . , n and with

an elliptic point with respect to the future-pointing Gauss map. Assume

that the height function h = πR ○ F ∶ Σ→ R satis�es

lim
x→∞

h(x) = −∞.

Suppose that the sectional curvature of Pn satis�es

KPn > −α,

for some α > 0. Let Ω ⊂ Σ be a relatively compact open set with ∂Ω ≠ ∅
such that F (∂Ω) ⊂ {0} × Pn. Assume

β2 = sup
Ω

Θ2 < αH
∗
k−1 +H

(k+1)/k
k

αH∗
k−1

,

where H∗
k−1 ∶= supΩHk−1. Then

F (Ω) ⊆
⎡⎢⎢⎢⎢⎣

(1 − β)Hk

H
k+1
k

k − α(β2 − 1)H∗
k−1

,0

⎤⎥⎥⎥⎥⎦
.

Proof. We only have to show the validity of the weak maximum princi-

ple on Σ for the operator Lk−1 and then the result follows from Theorem

54. Towards this end we let γ = −h, so that it satis�es

Lk−1γ = ck−1ΘHk ≤ −ck−1Hk < 0

and

γ(x)→ +∞ as x→∞.
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We then apply Theorem A of [AAR] to get the desired conclusion.
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Chapter 4

Height estimates in the A�ne

Space

4.1 Basic de�nitions in A�ne Geometry

In his Erlangen Program, Felix Klein proposed to approach geometry

as the study of invariants under some allowed transformations. Let S

be a set of points and G a subgroup of the group of bijections of S. We

say that A ⊂ S and B ⊂ S are equivalent in the geometry given by G

if there exists a transformation f ∈ G such that f(A) = B. So, we are

intersted in those properties that are invariant under the action of G.

A property P of a subset of S is a geometric property if, for any g ∈ G,
P is true for g(S). For instance, if S = Rn orthogonality is a geometric

property for Euclidean geometry but not for A�ne geometry.

Consider, again, S = Rn. A�ne geometry deals with properties in-

variant under a�ne transformations, that are transformations of the

form

T (x) ∶= Ax + b A ∈ GL(n,R), b ∈ Rn. (4.1)
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In a vector space V , we say that a subset W ⊂ V is an a�ne subspace

if there exists b ∈ V such that W + b is a linear subspace of V . An a�ne

trasformation sends a�ne subspaces in a�ne subspaces and preserves

parallelism. Indeed, consider two a�ne subspace W1, W2 in Rn. They

are said to be parallel if there exist b ∈ Rn such that W1 =W2 + b. Let
A ∈ GL(n,R), we have AW1 = AW2 + Ab, so that AW1 and AW2 are

parallel.

Before going on, we formalize the concepts we just treated.

De�nition 56. Let X be a set of points and V a vector space. We say

that (X,V,+) is an a�ne space if + ∶X ×V →X satis�es the following

conditions

A1 ∀P,Q ∈X there exists a unique vector v ∈ V such that P + v = Q;

A2 ∀v,w ∈ V and ∀P ∈X we have (P + v) +w = P + (v +w);

A3 ∀P ∈X we have P + 0V = P .

For P,Q ∈X, we denote by P −Q the uniquely determined (due to

A1) vector v ∈ V such that P = Q + v.
Clearly if V is a vector space, (V,V,+) is an a�ne space, where + is

the sum in V .

If (X,V,+) is an a�ne space, (Y,W,+) is an a�ne subspace if Y ⊂ X,

W < V is a subspace of the vector space V and for all y ∈ Y and w ∈W
we have y +w ∈ Y . This means that Y is closed under summation with

vectors of W .

If we choose an origin O ∈ X, we may look at X as a vector space.

Indeed, since for all P ∈ X vector P − O ∈ V is uniquely determined,

we have a bijection between X and V . However, one should keep in

mind that, since the choice of the origin is arbitrary, properties to be

considered are only those origin-independent.
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Now, we recall some facts on a�ne di�erential geometry, for more de-

tails see [LSZ],[CY1].

Let us consider a n + 1-dimensional real a�ne space An+1. We �x a

coordinate system, that is an origin in An+1 and a basis in the real

vector space associated, so that we can think of An+1 simply as Rn+1.

Considering the group of unimodular a�ne transformations acting over

An+1

x′ = Ax + b A ∈ SL(n + 1,R), b ∈ Rn+1 (4.2)

we call An+1 unimodular a�ne space.

Under unimodular a�ne transformations (4.2), vectors transform as

v′ = Av A ∈ SL(n + 1,R),

so the determinant of n + 1 vectors is an a�ne invariant. Indeed

det(v′1, . . . , v′n+1) = det(Av1, . . . ,Avn+1)
= det(A(v1, . . . , vn+1)) = det(v1, . . . , vn+1).

Let us consider, now, a hypersurface Mn immersed in An+1 and let us

call x its position vector. By local adapted a�ne frame we mean n + 1

local vector �elds {e1, . . . , en+1} in An+1 such that det(e1, . . . , en+1) = 1

and e1, . . . , en are tangent to M .

We summarize the structure equations:

dx = ωαeα (4.3)

deα = ωβαeβ (4.4)

dωα = ωβ ∧ ωαβ (4.5)

dωαβ = ωγβ ∧ ωαγ , (4.6)

where the forms ωα and ωαβ are de�ned by (4.3)-(4.4) and equations
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(4.5)-(4.6) are obtained by exterior di�erentiation of the �rst two equa-

tions. We adopt this convention for the range of indices

1 ≤ α,β, γ, ⋅ ⋅ ⋅ ≤ n + 1

1 ≤ i, j, k, ⋅ ⋅ ⋅ ≤ n

and we adopt Einstein's summation convention.

The condition det(e1, . . . , en+1) = 1 implies that ∑ωαα = 0 and the fact

that the �rst n vector �elds are tangent toM implies that ωn+1 = 0 over

M . So we have

ωβ ∧ ωn+1
β = 0,

hence by Cartan's Lemma there exist functions hij such that

ωn+1
i = hijωj (4.7)

hij = hji. (4.8)

We assume M to be locally strictly convex. This means that any point

p ∈M admits a neighborhood Up which is a convex graph under appro-

priate choice of coordinates. Due to this assumption, we can suppose

(hij) to be a positive de�nite matrix. Then we introduce the tensor

II = ∣H ∣− 1
n+2hijω

i ⊗ ωj,

where H ∶= det(hij). This tensor �eld can be proved to be invariant

under unimodular a�ne transformations, so it de�nes an a�nely in-

variant Riemannian metric, called Blaschke metric.

De�ning the vector

Y ∶= 1

n
∆x,

where ∆ denotes the Laplacian with respect to the Blaschke metric,
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we obtain a trasversal vector �eld that is invariant under unimodular

transformations. If we suppose en+1 parallel to Y we have the so called

apolarity condition

ωn+1
n+1 +

1

n + 2
d logH = 0. (4.9)

Suppose, now, H = 1, so that ωn+1
n+1 = 0. Exterior di�erentiating (4.7)

we obtain

(dhij − hikωkj − hkjωki ) ∧ ωj = 0,

for all i, so by Cartan's lemma we can de�ne coe�cients hijk such that

hijkω
k = dhij − hkjωki − hikωkj

hijk = hikj.

We remark now that we can consider on M two connections, the Levi-

Civita connection of the Blaschke metric, ∇̃, whose connection forms

are denoted by ω̃ij and the so called induced connection, ∇, whose

connection forms are ωij. This is the restriction to M of the a�ne �at

connection of An+1, say ∇, de�ned by

∇eiej = dej(ei).

One can prove that

ω̃ij − ωij =
1

2
hikhkjsω

s,

where (hij) denotes the inverse matrix of (hij).

Lemma 57. If we assume H = 1 we have the apolarity condition

hijhijkω
k = 0. (4.10)
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Proof. Using Jacobi relation Tr(A−1dA) = d log detA we obtain

0 = d logH = hijdhij
= hij(hijkωk + hkjωki + hikωkj )
= hijhijkωk.

Exterior di�erentiating (4.9) we obtain dωn+1
n+1 = 0 hence we have

ωin+1 ∧ ωn+1
i = 0

and applying Cartan's lemma with respect to ωn+1
i , that are linearly

independent, we can de�ne

ωin+1 =∶ −lijωn+1
j = −lijhjkωk =∶ −likωk

lij = lji

lji ∶= lkjhki = lki hkj =∶ lij

We introduce the symmetric quadratic form

B ∶= lijωiωj = lkjhkiωiωj

called third fundamental form and we call a�ne shape operator the

self-adjoint operator implicitly de�ned by

B(v,w) = II(σ(v),w).

A direct calculation shows that σ = −dY . The eigenvalues of σ, say

k1, . . . , kn, are called a�ne principal curvatures and the normalized el-

ementary symmetric functions of these eigenvalues are the a�ne mean
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curvature functions

(n
r
)Hr ∶= Sr ∶= ∑

1≤i1<⋅⋅⋅<ir≤n

ki1 . . . kir .

H1 is the a�ne mean curvature and Hn the a�ne Gauss-Kronecker

curvature.

4.2 The Laplacian of the a�ne normal

In this section we compute the Laplacian with respect to the Blaschke

metric of the a�ne normal Y of a locally strongly convex hypersurface

M immersed in An+1. See also [NO].

Let us consider a local unimodular a�ne frame along M , that is a

local adapted frame {e1, . . . , en+1} such that en+1 = Y . We are assuming

H = 1. We have

dY = den+1 = ωin+1ei = −lijωjei = Yjωj

and

Yijω
j = dYi − Ykω̃ki
= d(−lji ej) + l

j
kejω̃

k
i

= −dlji ej − l
j
iω

k
j ek − ljiωn+1

j en+1 + ljkejω̃ki
= −dlji ej − l

j
iω

k
j ek + ljkejω̃ki − lijωjen+1.

Di�erentiating ωin+1 = −lijωj we obtain

(dlij + lkjωik − likωkj ) ∧ ωj = 0,
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so applying Cartan's lemma we can de�ne coe�cients lijk = likj by

lijkω
k = dlij + lkjωik − lki ωkj .

Hence

Yijω
j = −ljikωkej + lki ω

j
kej − l

j
kω

k
i ej − ljiωkj ek + l

j
kejω̃

k
i − lijωjen+1

= −lkijωjek + lkj ek(ω̃ji − ω
j
i ) − lijωjen+1

= −lkijωjek +
1

2
lkmekh

mshsijω
j − lijωjen+1

= −lkijωjek +
1

2
lkshsijekω

j − lijωjen+1.

Therefore we have

∆Y = hijYij = −hijlkijek +
1

2
lksh

ijhsijek − nH1en+1.

Using hijlkij = nH1,k and (4.10) we have

∆Y = −nH1,kek − nH1en+1.

Lemma 58. If Mn ↪ An+1 is a locally strongly convex immersed hy-

persurface, the Laplacian of the a�ne normal is parallel to the a�ne

normal if and only if the a�ne mean curvature is constant and in this

case we have

∆Y = −nH1Y.

4.3 The main theorem

In this section we �nd a height estimate for compact, convex hypersur-

faces in An+1 with planar boundary and constant a�ne mean curvature.

This result is contained in the paper [Sc].
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Before stating our theorem we have to clarify what a�ne height means.

In the a�ne space we do not have a notion of natural distance between

points that is invariant under a�ne transformations but we can look

for an a�nely invariant distance between points and hyperplanes, us-

ing the volume form. Let us consider a hyperplane Π containing the

origin and a point P ∈ Rn+1. The main idea is to consider a basis for

Π, say e1, . . . , en, to complete this basis with a vector en+1 such that

det(e1, . . . , en+1) = 1 and then to consider the volume of the parallepiped

de�ned by the vectors e1, . . . , en and P

det(e1, . . . , en, P ).

This determinant gives the component of the position vector of P with

respect to en+1. The problem is that in general we do not have a

natural way to choose the vector en+1 in a way that is a�nely invariant.

But if we consider a tangent hyperplane of a locally strongly convex

hypersurface we can use the a�ne normal that is an a�nely invariant

transversal direction. Finally, we can give the following

De�nition 59. (See also [NS], p. 62) Let Mn ↪ An+1 be a locally

strongly convex hypersurface. Let us consider P ∈ An+1 and Q ∈ Mn.

We de�ne a�ne distance between P and the tangent hyperplane ofMn

in Q, Π, as

da(P,Π) ∶= det(e1, . . . , en, P −Q),

where {e1, . . . , en, Y } is a local unimodular a�ne frame in a neighbor-

hood of Q and Y is the a�ne normal.

Observe, again, that da(P,Π) can be viewed as the component of

P −Q along the a�ne normal Yp.

We can now state and prove our main theorem.
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Theorem 60. Let Mn ↪ An+1 be a strictly convex, compact, immersed

hypersurface with boundary contained in a hyperplane Π. Let us sup-

pose the a�ne mean curvature H1 to be a positive constant. Then the

maximal a�ne height that the points of the hypersurface can reach over

Π is less or equal to 1/H1.

If Mn is an ellipsoidal cap then we have the equality, so our estimate

is sharp.

Remark 61. We have de�ned, above, only the a�ne distance between

points and hyperplanes tangent to locally strongly convex a�ne hyper-

surfaces. In Theorem 60 with �maximal a�ne height that the points of

the hypersurface can reach over Π� we mean the maximal a�ne height

over the hyperplane tangent to M at some point P ∈M and parallel to

Π. This latter is unique due to the convexity assumption.

Let us indicate with ⟨ , ⟩ the inner product of Rn+1. AssumingO ∈ Π,

we can express Π as ⟨a, x⟩ = 0, with a ∈ Sn and ⟨a, z⟩ ≤ 0 for all z ∈M .

In what follows we will suppose ⟨a, Y ⟩ ≥ 0 at each point of the boundary

of the hypersurface (and so at each point of the hypersurface), where

Y denote the a�ne normal. This is an a�nely invariant property.

We can now prove the main theorem.

Proof. We suppose Mn to be the graph of a strictly convex function

f ∶ D ⊂ An → R, where D is a domain in the a�ne space An. We

suppose now that the boundary of Mn is contained in the hyperplane

{(x1, . . . , xn+1) ∈ An+1∣xn+1 = 0}. We call P ∈Mn a point where xn+1 is

minimum and Π̃ the hyperplane tangent to Mn in P .

The maximal a�ne distance of the points of Mn to the hyperplane

containing the boundary is the maximal a�ne distance of the points of

Mn to Π̃. In order to obtain an estimate for this distance we compute

the Laplacian with respect to the Blaschke metric of the (vectorial)
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function H1x + Y

∆(H1x + Y ) = nH1Y − nH1Y = 0,

where we used the fact that H1 is constant and Lemma 58. On the

boundary we have nH1xn+1 + Y n+1 = Y n+1 ≥ 0, for our assumption.

Using the classical maximum principle we have H1xn+1 + Y n+1 ≥ 0 on

Mn, so

xn+1 ≥ − 1

H1

Y n+1. (4.11)

Computing the a�ne normal for graphs (see [LSXJ], pag. 29) we have

Y =H 1
n+2f ij

∂

∂xi
log ρ ẽj +H

1
n+2 ẽn+1,

where

fij ∶=
∂2

∂xi∂xj
f

f ikfkj = δij

ẽi ∶= (0, . . . ,1, . . . ,
∂f

∂xi
) i = 1, . . . , n

ẽn+1 = (0, . . . ,0,1)

ρ ∶= (det( ∂2

∂xi∂xj
f))

− 1
n+2

=∶H− 1
n+2 .

Since at P the function f attains its minimum we have

Y n+1 =H 1
n+2 .

The a�ne distance between a point Q of Mn and Π is

da(Q, Π̃) = Q
n+1 − P n+1

H
1
n+2

,
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so it is maximal when the point Q is a boundary point and in this case

we have

da(Q, Π̃) = −P
n+1

H
1
n+2

.

Using (4.11) we have

da(Q,Π) ≤ 1

H1

H
1
n+2

H
1
n+2

= 1

H1

. (4.12)

Let us suppose now Mn to be the ellipsoidal cap given by the intersec-

tion of the hyperquadric

(x1)2 + ⋅ ⋅ ⋅ + (xn+1)2 = r2 r > 0

with the halfspace where xn+1 ≤ 0. For the ellipsoid we have Y =
−r−(2n+2)/(n+2)x and k1 = ⋅ ⋅ ⋅ = kn = r−(2n+2)/(n+2). So, we have that for a

point Q ∈ ∂Mn (with the same notation as above)

da(Q,Π) = −xP
n+1

H
1
n+2

= r
2n+2
n+2 Y n+1

H
1
n+2

= 1

H1

.

So, the inequality (4.12) is sharp.
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Appendix A

A.1 Cheeger inequality

Let (Mn, g) be an n−dimensional complete Rimannian manifold and

Ω ⊂⊂M a relatively compact domain with piecewise smooth boundary

∂Ω. Consider the eigenvalue problem for the Laplacian, with boundary

Dirichlet conditions ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆u = −λu in Ω

u = 0 on ∂Ω,
(A.1)

where ∆ denotes the Laplace-Beltrami operator on (M,g). We start

requiring u ∈ C2(Ω)∩C0(Ω). It can be shown that the set of λ such that

A.1 has a solution is discrete and can be ordered in a sequence of the

form

0 < λ1 < λ2 < ⋅ ⋅ ⋅→ +∞,

and that each eigenspace associated to these eigenvalues is �nite di-

mensional.

A deep question is to investigate the relationships between analytic

properties of the eigenvalues λk and geometric features of the domain

Ω. For instance, in dimension 2 the topology of the domain Ω imposes

some bounds for the multiplicities of each λk (see [Cheng] for further

details), while in dimensions greater than or equal to 3 it can be proved

99



that there are no restrictions on multiplicities (see [Co]). Speci�cally,

if M is a closed, connected manifold with dimension n ≥ 3 then any

preassigned �nite sequence 0 = λ0 < λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λk is the sequence

of the �rst k + 1 eigenvalues for −∆g, where g is a suitable Riemannian

metric on M and λk's are repeated according with multiplicity.

A famous example of relation between analytic and geometric proper-

ties of Ω is Weyl's asymptotic formula (see [Ch], [Wey])

(λk)n/2 ∼
(2π)n
ωn

k

Vol(Ω) as k →∞, (A.2)

where ωn denotes the volume of the unit disc in Rn. The important

message of this formula is that one can infer the volume of Ω by study-

ing the asymptotic behaviour of λk.

We focus our attention, now, on the �rst (non-zero, in the closed case)

eigenvalue λ1 and, in particular, we discuss some bounds that the ge-

ometry of Ω imposes on it. It is well known that Poincaré inequality is

a milestone in analysis; since a lower bound on λ1 gives an upper bound

on Poincaré constant, it is very interesting looking for lower bounds for

λ1. The �rst step in this direction is due to Lichnerowicz (see [L])

Theorem 62. Let (Mn, g) be a closed, connected Riemannian manifold

of dimension n ≥ 2 and let Ric be its Ricci tensor �eld. If

Ric(X,X) ≥ a(n − 1)∣X ∣2 ∀X ∈ TM,

where a is a positive constant, then

λ1 ≥ na. (A.3)

Obata in [O] showed that equality in (A.3) holds if and only if M is

isometric to the n-sphere of constant sectional curvature a. Later on,
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Li and Yau extended Lichnerowicz' result to the case a = 0 (see [LY]).

They proved that if (M,g) is compact, connected and has non-negative

Ricci curvature, then

λ1 ≥
π2

4d2
, (A.4)

where d is the diameter of the manifold. Zhong and Yang in [ZY] im-

proved Li and Yau's estimate (A.4) by showing that λ1 ≥ π2

d2 .

Given a closed Riemannian manifold (M,g) we de�ne the Cheeger con-
stant h(M) by

h(M) ∶= inf
S

Voln−1(S)
min{Vol(A),Vol(B)} ,

where S runs over all the hypersurfaces dividing M into two parts, A

and B. So, an equivalent de�nition of h(M) is

h(M) ∶= inf
A

Voln−1(∂A)
Vol(A) ,

where A runs over all open subsets ofM whose volume does not exceed

half of the total volume of M .

In 1970 Cheeger ([Chee]) gave the following lower bound for λ1

λ1 ≥
1

4
h2(M). (A.5)

Later on, Buser in [Bu] found an upper bound for λ1 in terms of h(M),
given a lower bound on the Ricci curvature. Speci�cally, let (Mn, g)
be a closed Riemannian manifold whose Ricci tensor satis�es Ric ≥
−(n − 1)δ2, for δ ≥ 0. Then

λ1(M) ≤ c1(δh + h2),

where c1 is a constant depending only on the dimension of M .
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Cheeger inequality (A.5) holds true also in the noncompact case, pro-

vided that we have clari�ed the correct de�nition of h(M) and λ1(M).
Let (M,g) be a noncompact Riemannian manifold. The Cheeger con-

stant, in this setting, is de�ned by

h(M) = inf
Ω

Voln−1(∂Ω)
Vol(Ω) ,

where Ω ranges over all relatively compact open domains in M . More-

over, onM by λ1(M) we mean the bottom of the spectrum (also called

�rst eigenvalue or spectral radius), de�ned by

λ1(M) ∶= inf
∫M ∣∇u∣2dv
∫M u2dv

,

where u ranges over all non-zero smooth functions with compact sup-

port. Therefore, we have

Theorem 63 (Cheeger). Let (M,g) be a complete Riemannian mani-

fold. We have

λ1(M) ≥ 1

4
h(M)2

Proof. Consider a relatively compact open domain Ω ⊂⊂ M and let u

be an eigenfunction relative to the �rst eigenvalue of −∆ in Ω, that is

∆u = −λ1(Ω)u on Ω and u = 0 on ∂Ω. Using Cauchy-Schwarz inequality

for ∇u2 = 2u∇u we get

λ1(Ω) = ∫Ω ∣∇u∣2

∫Ω u
2

≥ 1

4
(∫Ω ∣∇u2∣
∫Ω u

2
)

2

.
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Now, using the co-area formula, we have

∫
Ω
∣∇u2∣dv = ∫

∞

0
A(u2 = t)dt

≥ h(Ω)∫
∞

0
V (u2 ≥ t)dt

= h(Ω)∫
Ω
u2dv.

So, we get λ1(Ω) ≥ 1
4h(Ω)2. Then, since λ1(M) = inf λ1(Ω), with Ω ⊂M

bounded domain, and h(M) ≤ h(Ω) for every open Ω ⊂M , we achieve

λ1(M) ≥ 1

4
h2(M).
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