Aims - Nitric oxide (NO) plays a key role in vascular homeostasis and is produced by endothelial NO synthase (eNOS), encoded by NOS3 gene. We previously reported the genetic association between NOS3 rs753482-A>C polymorphism on intron 19 and coronary artery disease (CAD). In the attempt of conferring functional implication to the rs753482-A>C polymorphism, we investigated its influence on transcript maturation.Methods and resultsA transcript variant skipping exons 20-21 is prevalent in carriers of the rs753482-C allele and is translated in a novel truncated form of eNOS. The truncated eNOS displays increased basal NO production, is insensitive to calcium stimulation, and, upon heterodimerization with the full-length eNOS protein, exerts a dominant-negative effect on NO production. CAD patients and healthy subjects' carriers of the rs753482-C genotype are characterized by increased NO basal levels in peripheral blood and platelets, and negatively respond to oral glucose load by failing to increase NO synthesis following insulin wave. Furthermore, forearm vasodilation after reactive hyperaemia is dramatically impaired in rs753482-C carriers.ConclusionsWe demonstrated that subjects carrying the rs753482-C genotype express a novel stable truncated form of eNOS with altered enzymatic activity that influences NO production and endothelial function. These findings open to new intriguing perspectives to several diseases involving vascular response to NO.
A novel truncated form of eNOS associates with altered vascular function / E. Galluccio, L. Cassina, I. Russo, F. Gelmini, E. Setola, L. Rampoldi, L. Citterio, A. Rossodivita, M. Kamami, A. Colombo, O. Alfieri, M. Carini, E. Bosi, M. Trovati, P. Piatti, L.D. Monti, G. Casari. - In: CARDIOVASCULAR RESEARCH. - ISSN 0008-6363. - 101:3(2014 Mar), pp. 492-502. [10.1093/cvr/cvt267]
A novel truncated form of eNOS associates with altered vascular function
E. Galluccio;F. Gelmini;E. Setola;L. Rampoldi;M. Carini;E. Bosi;
2014
Abstract
Aims - Nitric oxide (NO) plays a key role in vascular homeostasis and is produced by endothelial NO synthase (eNOS), encoded by NOS3 gene. We previously reported the genetic association between NOS3 rs753482-A>C polymorphism on intron 19 and coronary artery disease (CAD). In the attempt of conferring functional implication to the rs753482-A>C polymorphism, we investigated its influence on transcript maturation.Methods and resultsA transcript variant skipping exons 20-21 is prevalent in carriers of the rs753482-C allele and is translated in a novel truncated form of eNOS. The truncated eNOS displays increased basal NO production, is insensitive to calcium stimulation, and, upon heterodimerization with the full-length eNOS protein, exerts a dominant-negative effect on NO production. CAD patients and healthy subjects' carriers of the rs753482-C genotype are characterized by increased NO basal levels in peripheral blood and platelets, and negatively respond to oral glucose load by failing to increase NO synthesis following insulin wave. Furthermore, forearm vasodilation after reactive hyperaemia is dramatically impaired in rs753482-C carriers.ConclusionsWe demonstrated that subjects carrying the rs753482-C genotype express a novel stable truncated form of eNOS with altered enzymatic activity that influences NO production and endothelial function. These findings open to new intriguing perspectives to several diseases involving vascular response to NO.File | Dimensione | Formato | |
---|---|---|---|
CARDIOVASC RES_2014.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
807.24 kB
Formato
Adobe PDF
|
807.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.