This study sought to determine whether afferent feedback associated with peripheral muscle fatigue inhibits central motor drive (CMD) and thereby limits endurance exercise performance. On two separate days, eight men performed constant-load, single-leg knee extensor exercise to exhaustion (85% of peak power) with each leg (Leg1 and Leg2). On another day, the performance test was repeated with one leg (Leg1) and consecutively (within 10 s) with the other/contralateral leg (Leg2-post). Exercise-induced quadriceps fatigue was assessed by reductions in potentiated quadriceps twitch-force from pre- to postexercise (ΔQtw,pot) in response to supramaximal magnetic femoral nerve stimulation. The output from spinal motoneurons, estimated from quadriceps electromyography (iEMG), was used to reflect changes in CMD. Rating of perceived exertion (RPE) was recorded during exercise. Time to exhaustion (~9.3 min) and exercise-induced ΔQtw,pot (~51%) were similar in Leg1 and Leg 2 (P > 0.5). In the consecutive leg trial, endurance performance of the first leg was similar to that observed during the initial trial (~9.3 min; P = 0.8); however, time to exhaustion of the consecutively exercising contralateral leg (Leg2- post) was shorter than the initial Leg 2 trial (4.7 ± 0.6 vs. 9.2 ± 0.4 min; P < 0.01). Additionally, ΔQtw,pot following Leg2-post was less than Leg2 (33 ± 3 vs 52 ± 3%; P < 0.01). Although the slope of iEMG was similar during Leg2 and Leg2-post, end-exercise iEMG following Leg2-post was 26% lower compared with Leg2 (P < 0.05). Despite a similar rate of rise, RPE was consistently ~28% higher throughout Leg2-post vs. Leg2 (P < 0.05). In conclusion, this study provides evidence that peripheral fatigue and associated afferent feedback limits the development of peripheral fatigue and compromises endurance exercise performance by inhibiting CMD. Copyright

PERIPHERAL FATIGUE LIMITS ENDURANCE EXERCISE VIA A SENSORY FEEDBACK-MEDIATED REDUCTION IN SPINAL MOTONEURONAL OUTPUT / M. Amann, M. Venturelli, S.J. Ives, J. Mcdaniel, G. Layec, M.J. Rossman, R.S. Richardson. - In: JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 8750-7587. - 115:3(2013 May 30), pp. 355-364. [10.1152/japplphysiol.00049.2013]

PERIPHERAL FATIGUE LIMITS ENDURANCE EXERCISE VIA A SENSORY FEEDBACK-MEDIATED REDUCTION IN SPINAL MOTONEURONAL OUTPUT

M. Venturelli
Secondo
;
2013

Abstract

This study sought to determine whether afferent feedback associated with peripheral muscle fatigue inhibits central motor drive (CMD) and thereby limits endurance exercise performance. On two separate days, eight men performed constant-load, single-leg knee extensor exercise to exhaustion (85% of peak power) with each leg (Leg1 and Leg2). On another day, the performance test was repeated with one leg (Leg1) and consecutively (within 10 s) with the other/contralateral leg (Leg2-post). Exercise-induced quadriceps fatigue was assessed by reductions in potentiated quadriceps twitch-force from pre- to postexercise (ΔQtw,pot) in response to supramaximal magnetic femoral nerve stimulation. The output from spinal motoneurons, estimated from quadriceps electromyography (iEMG), was used to reflect changes in CMD. Rating of perceived exertion (RPE) was recorded during exercise. Time to exhaustion (~9.3 min) and exercise-induced ΔQtw,pot (~51%) were similar in Leg1 and Leg 2 (P > 0.5). In the consecutive leg trial, endurance performance of the first leg was similar to that observed during the initial trial (~9.3 min; P = 0.8); however, time to exhaustion of the consecutively exercising contralateral leg (Leg2- post) was shorter than the initial Leg 2 trial (4.7 ± 0.6 vs. 9.2 ± 0.4 min; P < 0.01). Additionally, ΔQtw,pot following Leg2-post was less than Leg2 (33 ± 3 vs 52 ± 3%; P < 0.01). Although the slope of iEMG was similar during Leg2 and Leg2-post, end-exercise iEMG following Leg2-post was 26% lower compared with Leg2 (P < 0.05). Despite a similar rate of rise, RPE was consistently ~28% higher throughout Leg2-post vs. Leg2 (P < 0.05). In conclusion, this study provides evidence that peripheral fatigue and associated afferent feedback limits the development of peripheral fatigue and compromises endurance exercise performance by inhibiting CMD. Copyright
central fatigue; central motor drive; group III and IV afferents; neural feedback
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
Settore BIO/09 - Fisiologia
30-mag-2013
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/222890
Citazioni
  • ???jsp.display-item.citation.pmc??? 57
  • Scopus 158
  • ???jsp.display-item.citation.isi??? 154
social impact