Our current knowledge of the occurrence of proteins covalently modified by reactive carbonyl species (RCS) generated by lipid peroxidation indicates their involvement as pathogenic factors associated with several chronic degenerative diseases. Proteomics and mass spectrometry (MS) in the last decade have played a fundamental role in this context, allowing the demonstration of the formation of RCS-protein adducts in vitro and in vivo under different experimental conditions. In conjunction with functional and computational studies, MS has been widely applied in vitro to study the stoichiometry of the protein-RCS adduct formation, and, by identifying the site(s) of modification, to elucidate the molecular mechanisms of protein carbonylation and the physiologic impact of such modification on protein function. This review will provide an update of the MS methods commonly used in detecting and characterizing protein modification by RCS generated by lipid peroxidation, among which 4-hydroxy-trans-2-nonenal and acrolein represent the most studied and cytotoxic compounds. Research in this field, employing state-of-the-art MS, is rapidly and continuously evolving, owing also to the development of suitable derivatization and enrichment procedures enabling the improve MS detectability of RCS-protein adducts in complex biological matrices. By considering the emerging role of RCS in several human diseases, unequivocal analytical approaches by MS are needed to provide levels of intermediate diagnostic biomarkers for human diseases. This review focuses also on the different MS-based approaches so far developed for RCS-protein adduct quantification. This article is part of a Special Issue entitled: Protein Modifications.

Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts / M. Colzani, G. Aldini, M. Carini. - In: JOURNAL OF PROTEOMICS. - ISSN 1874-3919. - 92(2013 Apr 15), pp. 28-50.

Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts

M. Colzani
Primo
;
G. Aldini
Secondo
;
M. Carini
Ultimo
2013

Abstract

Our current knowledge of the occurrence of proteins covalently modified by reactive carbonyl species (RCS) generated by lipid peroxidation indicates their involvement as pathogenic factors associated with several chronic degenerative diseases. Proteomics and mass spectrometry (MS) in the last decade have played a fundamental role in this context, allowing the demonstration of the formation of RCS-protein adducts in vitro and in vivo under different experimental conditions. In conjunction with functional and computational studies, MS has been widely applied in vitro to study the stoichiometry of the protein-RCS adduct formation, and, by identifying the site(s) of modification, to elucidate the molecular mechanisms of protein carbonylation and the physiologic impact of such modification on protein function. This review will provide an update of the MS methods commonly used in detecting and characterizing protein modification by RCS generated by lipid peroxidation, among which 4-hydroxy-trans-2-nonenal and acrolein represent the most studied and cytotoxic compounds. Research in this field, employing state-of-the-art MS, is rapidly and continuously evolving, owing also to the development of suitable derivatization and enrichment procedures enabling the improve MS detectability of RCS-protein adducts in complex biological matrices. By considering the emerging role of RCS in several human diseases, unequivocal analytical approaches by MS are needed to provide levels of intermediate diagnostic biomarkers for human diseases. This review focuses also on the different MS-based approaches so far developed for RCS-protein adduct quantification. This article is part of a Special Issue entitled: Protein Modifications.
Derivatization/enrichment procedures; Detection; Lipid-derived reactive carbonyl species (RCS); Mass spectrometry; Quantification; RCS-modified proteins
Settore CHIM/08 - Chimica Farmaceutica
Article (author)
File in questo prodotto:
File Dimensione Formato  
J PROTEOMICS_2013.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/222617
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 39
social impact