Modified LaCoO3 and LaMnO3 were investigated as catalysts for low tvemperature flameless combustion of methane. Modifications were carried out by the substitution part of La for Sr2+ and Ce4+, by the addition of 0.5% of Pt or Pd and by the substitution with Ag, which have limited solubility in the perovskite structure and may exist as intraframework Ag+ and extraframework metallic silver. Catalysts were synthesized by flame pyrolysis, which lead to a significant increase of both surface area and thermal resistance in comparison with the catalysts prepared by traditional sol-gel method. Samples were mainly characterized by XRD, BET and TPR techniques. Catalytic activity for the flameless combustion of methane was investigated by means of bench scale continuous apparatus, equipped with a quadrupolar mass spectrometer. In addition the resistance of every catalysts against sulphur poisoning was tested by using tetrahydrothiophene (THT) as poisoning agent. In most cases modification of perovskites led to an activity improvement, which was much more evident in the case of silver substitution. All the FP-prepared catalysts showed full methane conversion below 600°C, with CO2 and H2O as the sole detected products. Sr-substitution and addition of noble metals increased resistance to sulphur poisoning, while silver was not effective from this point of view, its main advantage being a substantial increase of the initial activity, which lead to satisfactory performance even after poisoning.

Perovskite-like catalysts for the catalytic flameless combustion of methane / O. Buchneva, I. Rossetti, A. Kryukov. - In: CATALYSIS IN INDUSTRY. - ISSN 2070-0504. - 4:2(2012), pp. 121-128. [10.1134/S2070050412020043]

Perovskite-like catalysts for the catalytic flameless combustion of methane

O. Buchneva
Primo
;
I. Rossetti
Secondo
;
2012

Abstract

Modified LaCoO3 and LaMnO3 were investigated as catalysts for low tvemperature flameless combustion of methane. Modifications were carried out by the substitution part of La for Sr2+ and Ce4+, by the addition of 0.5% of Pt or Pd and by the substitution with Ag, which have limited solubility in the perovskite structure and may exist as intraframework Ag+ and extraframework metallic silver. Catalysts were synthesized by flame pyrolysis, which lead to a significant increase of both surface area and thermal resistance in comparison with the catalysts prepared by traditional sol-gel method. Samples were mainly characterized by XRD, BET and TPR techniques. Catalytic activity for the flameless combustion of methane was investigated by means of bench scale continuous apparatus, equipped with a quadrupolar mass spectrometer. In addition the resistance of every catalysts against sulphur poisoning was tested by using tetrahydrothiophene (THT) as poisoning agent. In most cases modification of perovskites led to an activity improvement, which was much more evident in the case of silver substitution. All the FP-prepared catalysts showed full methane conversion below 600°C, with CO2 and H2O as the sole detected products. Sr-substitution and addition of noble metals increased resistance to sulphur poisoning, while silver was not effective from this point of view, its main advantage being a substantial increase of the initial activity, which lead to satisfactory performance even after poisoning.
Catalytic combustion; Methane; Perovskite-like catalysts; Sulphur poisoning
Settore CHIM/02 - Chimica Fisica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Olga Catal Ind.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 455.26 kB
Formato Adobe PDF
455.26 kB Adobe PDF Visualizza/Apri
art%3A10.1134%2FS2070050412020043.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 205.11 kB
Formato Adobe PDF
205.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/220717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact