Being cellulose the most abundant natural polymer in biosphere, more and more attention has been paid on its new functionalities, sustainability, and renewability. Meanwhile, food packaging materials is one of the largest products we are using in daily life, but most of conventional materials are still oil-based due to their low cost and good performances. Therefore, in order to improve the sustainability and renewability of food packaging materials, this PhD dissertation focuses on development new nano-material (cellulose nanocrystals, CNs) for food packaging and includes mainly four sections. In the first section of this PhD dissertation, we reviewed the progress in knowledge on nano-cellulose first and then, specifically, on CNs. In this section the structure and classifications of various nano-cellulose preparations are included, as well as the preparation, the morphologies, and applications of CNs. In CNs applications, we reviewed that it exhibits excellent barrier, mechanical, and thermal properties itself or combined with other polymers. Particularly, the barrier properties refer to oxygen, water vapor, and migration barrier; mechanical properties are related with tensile strength, Young’s modulus, and strain percentage; the thermal properties include glass transition and melting or decomposition temperature, heat flow, and thermal mechanical parameters. In the second section of this PhD dissertation, to better understand the structure and status of CNs itself or in other polymers, we have used different powerful analytical tools for qualification and quantification. Firstly, we have obtained the relatively precise dimensions of CNs and observe its redispersability in different solvents, mainly water solutions. In the following, we could gain the information of the CNs status in other polymers in order to interpret the final performance efficiently. Finally, we preliminarily concluded that TEM, SEM, and AFM are suitable tools for observing individual crystals, estimating the roughness, and learning the morphology in different scale, respectively. As for the size distribution, functional groups, and interactions between the atoms of CNs, the particle size distributor, FTIR, XPS, and NMR are used for determinations, respectively. In the third section of this PhD dissertation, we have systematically investigated the properties of conventional films coated with CNs. In particular, we have analyzed their optical properties (transparency and haze), mechanical properties (static and dynamic coefficient of friction), anti-fog (contact angle and surface energy) and barrier properties (oxygen and water vapor transmission rates). In doing this, we have demonstrated that CNs coatings mainly lead to a reduction of friction, a premium feature for industrial applications, and that their influence on the optical properties of the packaging is not significant. Excellent anti-fog property guarantees customers more conveniently to evaluate the product inside the packages easily. At last but not the least, CNs coatings dramatically improve not only the oxygen barrier properties of conventional flexible food packaging, but also lead to a certain reduction in the water vapor transmission rate. The perspective use of CNs as multi-functional coatings favors a reduction of the required thickness for plastic films, towards a more environmentally-friendly and sustainable approach to packaging. In the last section of this PhD dissertation, we demonstrated the use of chitosan (CS)/CNs nanocomposites realized by layer-by-layer (LbL) self-assembly as oxygen barrier under different pH combinations. The oxygen permeability coefficient of CS/CNs nanocomposites is as low as 0.02 cm3 µm m-2 24h-1 kPa-1, close to EVOH co-polymers, under dry conditions. Meanwhile, we consider that CNs has no potential risks for human beings and the renewable origin of the carbohydrate polymers as significant added values that justify a deeper investigation. Finally, it deserves to be underlined also the chance of finely tuning the oxygen permeability by means of the pH values and the sharp control of the thickness associated with this process. Therefore, based on the advantages outlined above, the LbL CS/CNs nanocomposite represents a promising oxygen barrier component in transparent flexible packaging materials and semi rigid tridimensional objects (bottles, trays, boxes and etc.). Based on our researches, we conclude that CNs leads to very promising applications in food packaging field and deserves to be further investigated in the future.

La cellulosa è il polimero naturale più abbondante sulla terra, una risorsa rinnovabile che ogni anno viene prodotta in miliardi di tonnellate da molti organismi vegetali. Per questa ragione, su di essa si sta concentrando una crescente attenzione nell’ipotesi di una sua sempre maggiore applicazione nei più diversi campi. Quello del food packaging, che è ancora fortemente dipendente da materiali di sintesi e provenienti da risorse non rinnovabili, è particolarmente interessato ad un suo più ampio impiego, anche con il fine di aumentare la sostenibilità dei suoi prodotti e di ridurne l’impatto ambientale. Con questa tesi di dottorato si è inteso mettere a fuoco le potenzialità di impiego della nano cellulosa (cellulose nanocrystals, CNs), sperimentare la produzione e valutare le proprietà di alcune lacche a base di CNs, destinate a ricoprire convenzionali materiali flessibili per il confezionamento alimentare. La tesi si compone di quattro parti distinte. Nella prima parte si è inteso rappresentare lo stato dell’arte delle conoscenze e delle applicazioni della nanocellulosa, attraverso un ampio lavoro di documentazione bibliografica. Dapprima si è voluto mettere a fuoco quanto noto sulla struttura e la classificazione delle varie forme di nanocellulosa che è oggi possibile produrre e, a proposito della cellulosa nanocristallina in particolare, si è fatto il punto sulle tecniche di preparazione, la morfologia e le principali applicazioni. Da questo lavoro di documentazione sono emerse le notevoli proprietà di barriera ai gas ed a potenziali migranti, le eccellenti proprietà meccaniche (resistenza alla rottura, massima elongazione tensile, modulo di Young) e le interessanti caratteristiche termiche (transizione vetrosa, punto di fusione e di decomposizione) della CNs da sola ed in combinazione con altri materiali. Nella seconda sezione della tesi, al fine di comprendere meglio la struttura e la morfologia dei nanocristalli di cellulosa ottenuti attraverso un processo di idrolisi acida di linter di cotone, sono state utilizzate diverse tecniche analitiche avanzate, sia per la caratterizzazione qualitativa che quantitativa. E’ stato così possibile ottenere informazioni precise sulle dimensioni dei nano cristalli, il rapporto di forma, la solubilità e numerose altre loro importanti proprietà. In particolare le tecniche di TEM, SEM, e AFM sono apparse come le più adatte per osservare la morfologia dei cristalli, studiare le caratteristiche e la rugosità delle superfici trattate con lacche a base di CNs. Si è inoltre indagato sulla distribuzione delle dimensioni dei cristalli ottenuti e, grazie all’uso di FTIR, XPS e NMR, sulla natura dei gruppi funzionali disponibili e sulle loro interazioni. La terza parte della tesi è dedicata ad uno studio delle proprietà di alcuni differenti film, largamente impiegati per il food packaging (PET, OPP, OPA e cellophane), rivestiti con uno strato sottile di CNs. In particolare, è statomesso a punto il processo di laccatura e sono state misurate le proprietà ottiche (la trasparenza, l’opacità e le proprietà anti-fog), il coefficiente di frizione statico e dinamico, le energie superficiali e gli angoli di contatto, le proprietà di barriera all’ossigeno ed al vapor d’acqua. Da questo lavoro è emerso come sia effettivamente possibile rivestire di uno strato sottile (intorno ad un micron di spessore), omogeneo e continuo, film plastici differenti e che attraverso questo processo di laccatura, si riduce significativamente il coefficiente di frizione, si incrementano le proprietà anti-fog, si aumenta decisamente la barriera all’ossigeno, senza pregiudicare la trasparenza dei film di supporto. La prospettiva molto concreta è quella di costituire, in un modestissimo spessore, un coating multifunzionale con spiccate caratteristiche di sostenibilità e di sicurezza alimentare. L’ultima sezione della tesi è dedicata al lavoro fatto per sperimentare la possibile applicazione di una tecnica di rivestimento molto moderna (layer-by-layer coating, LbL) che sfrutta la formazione di legami elettrostatici tra biopolimeri caricati diversamente. In particolare si è dimostrata la possibilità di costituire lacche di un composito ottenuto mediante la sovrapposizione alternata di sottilissimi strati (da 6 a circa 30 nm) di chitosano e cellulosa nanocristallina. Il diverso pH delle soluzioni in cui vengono dispersi i due biopolimeri determina un diverso grado di ionizzazione delle cariche, rispettivamente positive del chitosano e negative della cellulosa, e di conseguenza diversi spessori e proporzioni relative dei due biopolimeri nel coating composito che si realizza. Ciò, evidentemente, permette di modulare in un ampio intervallo di valori, la permeabilità del film ricoperto. Il coefficiente di permeabilità del composito giunge a valori pari 0.02 cm3 µm m-2 24h-1 kPa-1, molto simili a quelli espressi da copolimeri a base di EVOH, in condizioni anidre. I vantaggi di un simile rivestimento sono comunque fondamentalmente legati alla sicurezza e non tossicità dei biopolimeri impiegati, dalla loro sostenibilità e dall’ampio grado di libertà disponibile nel modulare le caratteristiche finali di barriera, secondo le esigenze del prodotto da confezionare. Lo strato di lacca LbL così costituita rappresenta, in definitiva, una barriera all’ossigeno particolarmente promettente negli impieghi reali più critici anche per la concreta possibilità di realizzarla convenientemente su oggetti tridimensionali come bottiglie, vassoi e altri imballaggi finiti. In conclusione, le ricerche condotte rappresentano una base di partenza molto promettente per un’innovazione di sostenibilità e di prestazioni nel campo dell’imballaggio flessibile e meritano ulteriori approfondimenti ed applicazioni.

DEVELOPMENT OF NANO-MATERIAL FOR FOOD PACKAGING / F. Li ; tutor: L. Piergiovanni, S. Mannino ; coordinatore: M.G. Fortina. UNIVERSITA' DEGLI STUDI DI MILANO, 2013 Jan 30. 25. ciclo, Anno Accademico 2012. [10.13130/li-fei_phd2013-01-30].

DEVELOPMENT OF NANO-MATERIAL FOR FOOD PACKAGING

F. Li
2013

Abstract

Being cellulose the most abundant natural polymer in biosphere, more and more attention has been paid on its new functionalities, sustainability, and renewability. Meanwhile, food packaging materials is one of the largest products we are using in daily life, but most of conventional materials are still oil-based due to their low cost and good performances. Therefore, in order to improve the sustainability and renewability of food packaging materials, this PhD dissertation focuses on development new nano-material (cellulose nanocrystals, CNs) for food packaging and includes mainly four sections. In the first section of this PhD dissertation, we reviewed the progress in knowledge on nano-cellulose first and then, specifically, on CNs. In this section the structure and classifications of various nano-cellulose preparations are included, as well as the preparation, the morphologies, and applications of CNs. In CNs applications, we reviewed that it exhibits excellent barrier, mechanical, and thermal properties itself or combined with other polymers. Particularly, the barrier properties refer to oxygen, water vapor, and migration barrier; mechanical properties are related with tensile strength, Young’s modulus, and strain percentage; the thermal properties include glass transition and melting or decomposition temperature, heat flow, and thermal mechanical parameters. In the second section of this PhD dissertation, to better understand the structure and status of CNs itself or in other polymers, we have used different powerful analytical tools for qualification and quantification. Firstly, we have obtained the relatively precise dimensions of CNs and observe its redispersability in different solvents, mainly water solutions. In the following, we could gain the information of the CNs status in other polymers in order to interpret the final performance efficiently. Finally, we preliminarily concluded that TEM, SEM, and AFM are suitable tools for observing individual crystals, estimating the roughness, and learning the morphology in different scale, respectively. As for the size distribution, functional groups, and interactions between the atoms of CNs, the particle size distributor, FTIR, XPS, and NMR are used for determinations, respectively. In the third section of this PhD dissertation, we have systematically investigated the properties of conventional films coated with CNs. In particular, we have analyzed their optical properties (transparency and haze), mechanical properties (static and dynamic coefficient of friction), anti-fog (contact angle and surface energy) and barrier properties (oxygen and water vapor transmission rates). In doing this, we have demonstrated that CNs coatings mainly lead to a reduction of friction, a premium feature for industrial applications, and that their influence on the optical properties of the packaging is not significant. Excellent anti-fog property guarantees customers more conveniently to evaluate the product inside the packages easily. At last but not the least, CNs coatings dramatically improve not only the oxygen barrier properties of conventional flexible food packaging, but also lead to a certain reduction in the water vapor transmission rate. The perspective use of CNs as multi-functional coatings favors a reduction of the required thickness for plastic films, towards a more environmentally-friendly and sustainable approach to packaging. In the last section of this PhD dissertation, we demonstrated the use of chitosan (CS)/CNs nanocomposites realized by layer-by-layer (LbL) self-assembly as oxygen barrier under different pH combinations. The oxygen permeability coefficient of CS/CNs nanocomposites is as low as 0.02 cm3 µm m-2 24h-1 kPa-1, close to EVOH co-polymers, under dry conditions. Meanwhile, we consider that CNs has no potential risks for human beings and the renewable origin of the carbohydrate polymers as significant added values that justify a deeper investigation. Finally, it deserves to be underlined also the chance of finely tuning the oxygen permeability by means of the pH values and the sharp control of the thickness associated with this process. Therefore, based on the advantages outlined above, the LbL CS/CNs nanocomposite represents a promising oxygen barrier component in transparent flexible packaging materials and semi rigid tridimensional objects (bottles, trays, boxes and etc.). Based on our researches, we conclude that CNs leads to very promising applications in food packaging field and deserves to be further investigated in the future.
30-gen-2013
La cellulosa è il polimero naturale più abbondante sulla terra, una risorsa rinnovabile che ogni anno viene prodotta in miliardi di tonnellate da molti organismi vegetali. Per questa ragione, su di essa si sta concentrando una crescente attenzione nell’ipotesi di una sua sempre maggiore applicazione nei più diversi campi. Quello del food packaging, che è ancora fortemente dipendente da materiali di sintesi e provenienti da risorse non rinnovabili, è particolarmente interessato ad un suo più ampio impiego, anche con il fine di aumentare la sostenibilità dei suoi prodotti e di ridurne l’impatto ambientale. Con questa tesi di dottorato si è inteso mettere a fuoco le potenzialità di impiego della nano cellulosa (cellulose nanocrystals, CNs), sperimentare la produzione e valutare le proprietà di alcune lacche a base di CNs, destinate a ricoprire convenzionali materiali flessibili per il confezionamento alimentare. La tesi si compone di quattro parti distinte. Nella prima parte si è inteso rappresentare lo stato dell’arte delle conoscenze e delle applicazioni della nanocellulosa, attraverso un ampio lavoro di documentazione bibliografica. Dapprima si è voluto mettere a fuoco quanto noto sulla struttura e la classificazione delle varie forme di nanocellulosa che è oggi possibile produrre e, a proposito della cellulosa nanocristallina in particolare, si è fatto il punto sulle tecniche di preparazione, la morfologia e le principali applicazioni. Da questo lavoro di documentazione sono emerse le notevoli proprietà di barriera ai gas ed a potenziali migranti, le eccellenti proprietà meccaniche (resistenza alla rottura, massima elongazione tensile, modulo di Young) e le interessanti caratteristiche termiche (transizione vetrosa, punto di fusione e di decomposizione) della CNs da sola ed in combinazione con altri materiali. Nella seconda sezione della tesi, al fine di comprendere meglio la struttura e la morfologia dei nanocristalli di cellulosa ottenuti attraverso un processo di idrolisi acida di linter di cotone, sono state utilizzate diverse tecniche analitiche avanzate, sia per la caratterizzazione qualitativa che quantitativa. E’ stato così possibile ottenere informazioni precise sulle dimensioni dei nano cristalli, il rapporto di forma, la solubilità e numerose altre loro importanti proprietà. In particolare le tecniche di TEM, SEM, e AFM sono apparse come le più adatte per osservare la morfologia dei cristalli, studiare le caratteristiche e la rugosità delle superfici trattate con lacche a base di CNs. Si è inoltre indagato sulla distribuzione delle dimensioni dei cristalli ottenuti e, grazie all’uso di FTIR, XPS e NMR, sulla natura dei gruppi funzionali disponibili e sulle loro interazioni. La terza parte della tesi è dedicata ad uno studio delle proprietà di alcuni differenti film, largamente impiegati per il food packaging (PET, OPP, OPA e cellophane), rivestiti con uno strato sottile di CNs. In particolare, è statomesso a punto il processo di laccatura e sono state misurate le proprietà ottiche (la trasparenza, l’opacità e le proprietà anti-fog), il coefficiente di frizione statico e dinamico, le energie superficiali e gli angoli di contatto, le proprietà di barriera all’ossigeno ed al vapor d’acqua. Da questo lavoro è emerso come sia effettivamente possibile rivestire di uno strato sottile (intorno ad un micron di spessore), omogeneo e continuo, film plastici differenti e che attraverso questo processo di laccatura, si riduce significativamente il coefficiente di frizione, si incrementano le proprietà anti-fog, si aumenta decisamente la barriera all’ossigeno, senza pregiudicare la trasparenza dei film di supporto. La prospettiva molto concreta è quella di costituire, in un modestissimo spessore, un coating multifunzionale con spiccate caratteristiche di sostenibilità e di sicurezza alimentare. L’ultima sezione della tesi è dedicata al lavoro fatto per sperimentare la possibile applicazione di una tecnica di rivestimento molto moderna (layer-by-layer coating, LbL) che sfrutta la formazione di legami elettrostatici tra biopolimeri caricati diversamente. In particolare si è dimostrata la possibilità di costituire lacche di un composito ottenuto mediante la sovrapposizione alternata di sottilissimi strati (da 6 a circa 30 nm) di chitosano e cellulosa nanocristallina. Il diverso pH delle soluzioni in cui vengono dispersi i due biopolimeri determina un diverso grado di ionizzazione delle cariche, rispettivamente positive del chitosano e negative della cellulosa, e di conseguenza diversi spessori e proporzioni relative dei due biopolimeri nel coating composito che si realizza. Ciò, evidentemente, permette di modulare in un ampio intervallo di valori, la permeabilità del film ricoperto. Il coefficiente di permeabilità del composito giunge a valori pari 0.02 cm3 µm m-2 24h-1 kPa-1, molto simili a quelli espressi da copolimeri a base di EVOH, in condizioni anidre. I vantaggi di un simile rivestimento sono comunque fondamentalmente legati alla sicurezza e non tossicità dei biopolimeri impiegati, dalla loro sostenibilità e dall’ampio grado di libertà disponibile nel modulare le caratteristiche finali di barriera, secondo le esigenze del prodotto da confezionare. Lo strato di lacca LbL così costituita rappresenta, in definitiva, una barriera all’ossigeno particolarmente promettente negli impieghi reali più critici anche per la concreta possibilità di realizzarla convenientemente su oggetti tridimensionali come bottiglie, vassoi e altri imballaggi finiti. In conclusione, le ricerche condotte rappresentano una base di partenza molto promettente per un’innovazione di sostenibilità e di prestazioni nel campo dell’imballaggio flessibile e meritano ulteriori approfondimenti ed applicazioni.
Settore AGR/15 - Scienze e Tecnologie Alimentari
food packaging ; cellulose nanocrystals (CNs) ; layer-by-layer (LbL) assembly ; functional coatings ; oxygen barrier ; anti-fog properties
PIERGIOVANNI, LUCIANO
FORTINA, MARIA GRAZIA
Doctoral Thesis
DEVELOPMENT OF NANO-MATERIAL FOR FOOD PACKAGING / F. Li ; tutor: L. Piergiovanni, S. Mannino ; coordinatore: M.G. Fortina. UNIVERSITA' DEGLI STUDI DI MILANO, 2013 Jan 30. 25. ciclo, Anno Accademico 2012. [10.13130/li-fei_phd2013-01-30].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08834.pdf

Open Access dal 10/07/2014

Tipologia: Tesi di dottorato completa
Dimensione 6.28 MB
Formato Adobe PDF
6.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/215685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact