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ABSTRACT 

 

Being cellulose the most abundant natural polymer in biosphere, more and more attention has 

been paid on its new functionalities, sustainability, and renewability. Meanwhile, food 

packaging materials is one of the largest products we are using in daily life, but most of 

conventional materials are still oil-based due to their low cost and good performances. 

Therefore, in order to improve the sustainability and renewability of food packaging materials, 

this PhD dissertation focuses on development new nano-material (cellulose nanocrystals, CNs) 

for food packaging and includes mainly four sections.  

 

In the first section of this PhD dissertation, we reviewed the progress in knowledge on 

nano-cellulose first and then, specifically, on CNs. In this section the structure and 

classifications of various nano-cellulose preparations are included, as well as the preparation, 

the morphologies, and applications of CNs. In CNs applications, we reviewed that it exhibits 

excellent barrier, mechanical, and thermal properties itself or combined with other polymers. 

Particularly, the barrier properties refer to oxygen, water vapor, and migration barrier; 

mechanical properties are related with tensile strength, Young‘s modulus, and strain percentage; 

the thermal properties include glass transition and melting or decomposition temperature, heat 

flow, and thermal mechanical parameters.  

 

In the second section of this PhD dissertation, to better understand the structure and status of 

CNs itself or in other polymers, we have used different powerful analytical tools for 

qualification and quantification. Firstly, we have obtained the relatively precise dimensions of 

CNs and observe its redispersability in different solvents, mainly water solutions. In the 

following, we could gain the information of the CNs status in other polymers in order to 

interpret the final performance efficiently. Finally, we preliminarily concluded that TEM, SEM, 

and AFM are suitable tools for observing individual crystals, estimating the roughness, and 

learning the morphology in different scale, respectively. As for the size distribution, functional 

groups, and interactions between the atoms of CNs, the particle size distributor, FTIR, XPS, and 

NMR are used for determinations, respectively.  

 

In the third section of this PhD dissertation, we have systematically investigated the properties 

of conventional films coated with CNs. In particular, we have analyzed their optical properties 

(transparency and haze), mechanical properties (static and dynamic coefficient of friction), 

anti-fog (contact angle and surface energy) and barrier properties (oxygen and water vapor 

transmission rates). In doing this, we have demonstrated that CNs coatings mainly lead to a 
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reduction of friction, a premium feature for industrial applications, and that their influence on 

the optical properties of the packaging is not significant. Excellent anti-fog property guarantees 

customers more conveniently to evaluate the product inside the packages easily. At last but not 

the least, CNs coatings dramatically improve not only the oxygen barrier properties of 

conventional flexible food packaging, but also lead to a certain reduction in the water vapor 

transmission rate. The perspective use of CNs as multi-functional coatings favors a reduction of 

the required thickness for plastic films, towards a more environmentally-friendly and 

sustainable approach to packaging.  

 

In the last section of this PhD dissertation, we demonstrated the use of chitosan (CS)/CNs 

nanocomposites realized by layer-by-layer (LbL) self-assembly as oxygen barrier under 

different pH combinations. The oxygen permeability coefficient of CS/CNs nanocomposites is 

as low as 0.02 cm
3
 µm m

-2
 24h

-1
 kPa

-1
, close to EVOH co-polymers, under dry conditions. 

Meanwhile, we consider that CNs has no potential risks for human beings and the renewable 

origin of the carbohydrate polymers as significant added values that justify a deeper 

investigation. Finally, it deserves to be underlined also the chance of finely tuning the oxygen 

permeability by means of the pH values and the sharp control of the thickness associated with 

this process. Therefore, based on the advantages outlined above, the LbL CS/CNs 

nanocomposite represents a promising oxygen barrier component in transparent flexible 

packaging materials and semi rigid tridimensional objects (bottles, trays, boxes and etc.).  

 

Based on our researches, we conclude that CNs leads to very promising applications in food 

packaging field and deserves to be further investigated in the future.  
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RIASSUNTO 

 

La cellulosa è il polimero naturale più abbondante sulla terra, una risorsa rinnovabile che ogni 

anno viene prodotta in miliardi di tonnellate da molti organismi vegetali. Per questa ragione, su 

di essa si sta concentrando una crescente attenzione nell‘ipotesi di una sua sempre maggiore 

applicazione nei più diversi campi. Quello del food packaging, che  è ancora fortemente 

dipendente da materiali di sintesi e provenienti da risorse non rinnovabili, è particolarmente 

interessato ad un suo più ampio impiego, anche con il fine di  aumentare la sostenibilità dei 

suoi prodotti e di ridurne l‘impatto ambientale. Con questa tesi di dottorato si è inteso mettere a 

fuoco le potenzialità di impiego della nano cellulosa (cellulose nanocrystals, CNs), 

sperimentare la produzione e valutare le proprietà di alcune lacche a base di CNs, destinate a 

ricoprire convenzionali materiali flessibili per il confezionamento alimentare. La tesi si 

compone di quattro parti distinte.  

 

Nella prima parte si è inteso rappresentare lo  stato dell‘arte delle conoscenze e delle 

applicazioni della nanocellulosa, attraverso un ampio lavoro di documentazione bibliografica. 

Dapprima si è voluto mettere a fuoco quanto noto sulla struttura e la classificazione delle varie 

forme di nanocellulosa che è oggi possibile produrre e, a proposito della cellulosa 

nanocristallina in particolare, si è fatto il punto sulle tecniche di preparazione, la morfologia e le 

principali applicazioni. Da questo lavoro di documentazione sono emerse le notevoli proprietà 

di barriera ai gas ed a potenziali  migranti, le eccellenti proprietà meccaniche (resistenza alla 

rottura, massima elongazione tensile, modulo di Young) e le interessanti caratteristiche termiche 

(transizione vetrosa, punto di fusione e di decomposizione) della CNs da sola ed in 

combinazione con altri materiali.  

 

Nella seconda sezione della tesi, al fine di comprendere meglio la struttura e la morfologia dei 

nanocristalli di cellulosa ottenuti attraverso un processo di idrolisi acida di linter di cotone, sono 

state utilizzate diverse tecniche analitiche avanzate, sia per la caratterizzazione qualitativa che 

quantitativa. E‘ stato così possibile ottenere informazioni precise sulle dimensioni dei nano 

cristalli, il rapporto di forma, la solubilità e numerose altre loro importanti proprietà. In 

particolare le tecniche di TEM, SEM, e AFM sono apparse come le più adatte per osservare la 

morfologia dei cristalli, studiare le caratteristiche e la rugosità delle superfici trattate con lacche 

a base di CNs. Si è inoltre indagato sulla distribuzione delle dimensioni dei cristalli ottenuti e, 

grazie all‘uso di  FTIR, XPS e NMR, sulla natura dei gruppi funzionali disponibili e sulle loro 

interazioni.  
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La terza parte della tesi è dedicata ad uno studio delle proprietà di alcuni differenti film, 

largamente impiegati per il food packaging (PET, OPP, OPA e cellophane), rivestiti con uno 

strato sottile di CNs. In particolare, è statomesso a punto il processo di laccatura e sono state 

misurate le proprietà ottiche (la trasparenza, l‘opacità e le proprietà anti-fog), il coefficiente di 

frizione statico e dinamico, le energie superficiali e gli angoli di contatto, le proprietà di barriera 

all‘ossigeno ed al vapor d‘acqua. Da questo lavoro è emerso come sia effettivamente possibile 

rivestire di uno strato sottile (intorno ad un micron di spessore), omogeneo e continuo,  film 

plastici differenti e  che attraverso questo  processo di laccatura, si riduce significativamente 

il coefficiente di frizione, si incrementano le proprietà anti-fog, si aumenta decisamente la 

barriera all‘ossigeno, senza pregiudicare la trasparenza dei film di supporto. La prospettiva 

molto concreta è quella di costituire, in un modestissimo spessore, un coating multifunzionale  

con spiccate caratteristiche di sostenibilità  e di sicurezza alimentare.  

 

L‘ultima sezione della tesi è dedicata al lavoro fatto per sperimentare la possibile applicazione 

di una tecnica di rivestimento molto moderna (layer-by-layer coating, LbL) che sfrutta la 

formazione di legami elettrostatici tra biopolimeri caricati diversamente. In particolare si è 

dimostrata la possibilità di costituire lacche di un composito ottenuto mediante la 

sovrapposizione alternata di sottilissimi strati (da 6 a circa 30 nm) di chitosano e cellulosa 

nanocristallina. Il diverso pH delle soluzioni in cui vengono dispersi i due biopolimeri 

determina un diverso grado di ionizzazione delle cariche, rispettivamente  positive del 

chitosano e negative della cellulosa,  e di conseguenza diversi spessori e proporzioni relative  

dei due biopolimeri nel coating composito che si realizza. Ciò, evidentemente, permette di 

modulare in un ampio intervallo di valori, la permeabilità del film ricoperto. Il coefficiente di 

permeabilità del composito giunge a valori pari 0.02 cm
3
 µm m

-2
 24h

-1
 kPa

-1
, molto simili a 

quelli espressi da copolimeri a base di EVOH, in condizioni anidre. I vantaggi di un simile 

rivestimento sono comunque fondamentalmente legati alla sicurezza e non tossicità dei 

biopolimeri impiegati, dalla loro sostenibilità e dall‘ampio grado di libertà disponibile nel 

modulare le caratteristiche finali di barriera,  secondo le esigenze del prodotto da confezionare. 

Lo strato di lacca LbL così costituita rappresenta, in definitiva, una barriera all‘ossigeno 

particolarmente promettente negli impieghi reali più critici anche per la concreta possibilità di 

realizzarla convenientemente su oggetti tridimensionali come bottiglie, vassoi e altri imballaggi 

finiti.  

 

In conclusione, le ricerche condotte rappresentano una base di partenza molto promettente per 

un‘innovazione di sostenibilità e di prestazioni nel campo dell‘imballaggio flessibile e meritano 

ulteriori approfondimenti ed applicazioni.  
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0 PREFACE 

 

The requirement of sustainability and safety of products and processes are increasing due to the 

progressive reduction in un-renewable resources and to the environment deterioration. A 

sustainable green economy needs a revolutionary change to overcome today‘s dependency on 

fossil fuels and bring about a shift towards products based on natural resources. Within the 

energy supply sector, the change will be solar and wind power; within the materials sector, it is 

renewable materials, bio-based plastics and composites.  

 

Food packaging, as one of the largest markets all over the world, accounts for about 500 billion 

euro and uses approximately 250 million tons of different materials each year. Packaging, 

however, is not only about holding foods but also to prolong shelf-life and extend quality 

maintenance of foods in order to distribute them in long term, and where they are most needed. 

Therefore, a special attention to packaging materials performance has to be paid together with 

the evaluation of their sustainability. Conventional food packaging materials have limited 

sustainability but exhibit many advantages so as to be very difficult to substitute them by new 

materials in short term.  

 

Cellulose has been used for thousands of years in many different fields and is an annual 

renewable resource; thus, its safety and sustainability are beyond debate. However, the present 

utilization of cellulose limits on conventional way. After many years‘ development, cellulose 

nanocrystals (CNs) come into our views and recently have been paid more and more attention.  

 

Based on above situations, we did some investigations on basic structure, morphology, and 

different properties of CNs in order to better understand it and attempt to develop new 

applications of CNs on high performing food packaging materials.  
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1 STATE OF THE ART  

 

1.1 Nano-cellulose  

Cellulose is the most abundant natural material biopolymer in the biosphere. Its production is 

estimated to be over seventy-five billion tons annually (Habibi et al., 2010), we therefore could 

consider cellulose as the most abundant sustainable and renewable material biopolymer. Paper, 

furniture, floor etc. all origin from cellulose, which indicates that human beings have been 

realizing and using cellulose almost everywhere in our daily life for thousands of years. 

However, since the computers emerged, the use for one of the largest cellulose-based products, 

paper, has been reducing all the time. Facing huge quantity of cellulose, we therefore have to 

rethink about how to utilize it more efficiently and develop more functions from it. Based on 

above situation, nano-cellulose therefore is paid more attention once again recently.  

 

 

Figure 1 Schematic of the tree hierarchical structure (Postek et al., 2011). 

 

In our daily life, the use of cellulose only could be classified into the first generation, which 

took advantages of hierarchical structure design. Natural materials develop functionality, 
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flexibility and high mechanical strength/weight performance by exploiting hierarchical structure 

design that spans nanoscale to macroscopic dimensions (Figure 1). However, the first 

generation cellulose products are insufficient to meet the demands of modern society for high 

performance materials, which is another reason for compelling scientists to further investigate 

the fundamental reinforcement unit, cellulose nanoparticles, in our case, cellulose nanocrystals 

(CNs).  

 

1.1.1 Nano-cellulose structure 

 

Figure 2 Schematics of (a) single cellulose chain repeat unit, showing the directionality of the 

14 linkage and intrachain hydrogen bonds (dotted line), (b) idealized cellulose microfibril 

showing one of the suggested configurations of the crystalline and amorphous regions, and (c) 

cellulose nanocrystals after acid hydrolysis dissolved the disordered regions (Moon et al., 

2011).  

 

Cellulose is a linear chain of ringed glucose molecules and has a flat ribbon-like conformation. 

The repeat unit (Figure 2a) is comprised of two anhydroglucose rings ((C6H10O5)n); n = 10000 

to 15000, where n is depended on the cellulose source material) linked together through an 

oxygen covalently bonded to C1 of one glucose ring and C4 of the adjoining ring (14 linkage) 

and so called the 1–4 glucosidic bond (Azizi Samir et al., 2005; Moon et al., 2011). The intra- 

and inter-chain hydrogen bonds network between hydroxyl groups and oxygen of the adjoining 

ring molecules stabilizes the linkage, and makes cellulose having linear chain thereby be a 
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relatively stable polymer, and gives the cellulose fibrils high axial stiffness. These cellulose 

fibrils are the main reinforcement phase for trees, plants, some marine creatures (tunicates), 

algae, and bacteria. Within these cellulose fibrils there are highly ordered (crystalline) regions 

and disordered (amorphous-like) regions, but the structure and distribution of these crystalline 

and amorphous domains within cellulose fibrils have yet to be rectified (Figure 2b) (Moon et al., 

2011; Nishiyama, 2009). However, it is these crystalline regions contained within the cellulose 

microfibrils that are extracted, resulting in cellulose nanocrystals (CNs) (Figure 2c).  

 

1.1.2 Nano-cellulose classifications 

The term nano-cellulose generally includes cellulose nanocrystals, nanowhisker, or 

nanocrystalline (CNs, CNW, or CNC), micro- or nano-fibrillated cellulose (MFC or NFC), 

TEMPO-oxidized cellulose nanofibre (TOCN), and bacterial cellulose (BC). Herein, although 

we classify nano-cellulose into four groups by preparation methods, there yet should be some 

overlapped parts among them. In the literature CNs are also referred as CNW or CNC, when 

they are stiff and rod like or as MFC, NFC, or cellulose microcrystals, or microcrystallites when 

they are longer and more flexible consisting of alternating crystalline and amorphous domains. 

The latter are usually prepared by combining mild hydrolysis (acidic or enzymatic) and 

mechanical defibrillation treatments (ultra-blender, grinder, homogenizer and so on). In the PhD 

dissertation, we focus on the CNs and its characterizations, morphology, and applications.  

 

1.1.3 Nano-cellulose preparations  

Chemical and physical treatments are two ways for preparing nano-cellulose. A huge number of 

scientific articles appeared during recent years, describing possible procedures to obtain 

cellulose at nanoscale. Few of them led to industrial applications but all are good descriptions of 

main priciples behind nano cellulose obtainment. In this PhD project we used the method most 

useful and suitable for our lab's facilities but literature is easily available for accurate reports 

about the different ways of preparing nano cellulose; in this paragraph, these different methods 

are just shortly mentioned with references to the main papers published as follows: chemical 

ways: acidic (Habibi et al., 2010; Moon et al., 2011) and enzymatic hydrolysis (Ahola et al., 

2008; Filson et al., 2009; Meyabadi & Dadashian, 2012; Paakko et al., 2007; Siro & Plackett, 

2010) and TEMPO-oxidized processes (Fujisawa et al., 2011; Fukuzumi et al., 2009; Isogai et 

al., 2011; Okita et al., 2011; Saito et al., 2007; Saito et al., 2006; Saito et al., 2005; Shinoda et 

al., 2012); physical ways: refining and high-pressure homogenization (López-Rubio et al., 2007; 

Nakagaito et al., 2005; Paakko et al., 2007; Stenstad et al., 2008; Zimmermann et al., 2004), 

cryocrushing (Alemdar & Sain, 2008; Chakraborty et al., 2007; Wang & Sain, 2007a, b) and 

grinding (Iwamoto et al., 2007; Iwamoto et al., 2005).  
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In the PhD dissertation, we are specifically studying on CNs. The main process of CNs 

preparation from cellulose fibers is acidic hydrolysis. During the hydrolysis, the disordered 

(amorphous) or para-crystalline regions of cellulose are preferentially hydrolyzed, but the 

crystalline parts remain intact due to its higher resistance to acid attack (Anglès & Dufresne, 

2001).  

 

The sulfuric and hydrochloric acids have been extensively utilized as well as the phosphoric and 

hydrobromic acids (Habibi et al., 2010; Johansson et al., 2012). Moreover, different acids, 

H2SO4 and HCl for hydrolysis lead to distinct properties of CNs: Colloidal dispersion of the 

HCl-treated sample was obtained by more thorough removal of acid from the hydrolysate than 

in the case of H2SO4 treatment (Araki et al., 1998). In other words, the dispersed ability of 

HCl-treated sample is limited and their aqueous suspensions tend to flocculate, whereas during 

hydrolysis of H2SO4 the cellulose grafts several charged sulfate ester group on the surface, 

which results in improving the dispersion of CNs in aqueous solutions and polar solvents, and 

hence induces crucial characters. It was reported that the optimized processes of extracting CNs 

from plant resource, for instance cotton, were grinding and 64% (w/w) sulfuric acid, following 

with neutralization by dilution and dialysis, ultrasonic treatment, filtration and removing excess 

ions from suspension (Dong et al., 1998). To obtain the CNs from different origins, the 

processes are similar, but the conditions (Elazzouzi-Hafraoui et al., 2007) varied according to 

different measurements and requirements. Likewise, Bondeson et al prepared the CNs from 

Microcrystalline cellulose (MCC) by 63.5% (w/w) H2SO4, sequentially obtaining CNs with a 

length between 200 and 400 nm and a width less than 10 nm in approximately 2 h with a yield 

of 30% (of initial weight) (Bondeson et al., 2006). The investigation of Håkansson & Ahlgren  

found that dilute acids (HCl and H2SO4) hydrolysis of pulp led to the same leveling-off degree 

of polymerization (LODP) (Håkansson & Ahlgren, 2005), but a longer time was needed under 

the milder conditions. Meanwhile, they reported that distinguished intrinsic viscosities of birch 

prehydrolysed kraft pulp and a mixed hardwood prehydrolysed kraft pulp, after hydrolysis, only 

had a small difference (10%) in LODP. Beck-Candanedo  demonstrated that longer hydrolysis 

times and increasing acid-to-pulp ratio produced shorter CNs, less polydisperse black spruce 

CNs and slightly increased the critical concentration for anisotropic phase formation and the 

biphasic range became narrower (Beck-Candanedo et al., 2005).  

 

1.1.4 Morphology of CNs 

The acidic hydrolysis methods (Araki et al., 1998; Beck-Candanedo et al., 2005; Bondeson et 

al., 2006; de Souza Lima & Borsali, 2002; Dong et al., 1998; Elazzouzi-Hafraoui et al., 2007; 

Favier et al., 1995; Håkansson & Ahlgren, 2005; Marchessault et al., 1961; Nickerson & Habrle, 

1947; Roman & Winter, 2004) were commonly used for extracting the CNs from natural origins, 
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which brings on producing varieties of CNs and observed by transmission electronic 

microscopy (TEM). TEM figures of CNs are presented in Figure 3 and show rod-like 

morphology with dimensions dependent on the source of the native cellulose, including cotton, 

Valonia algae, bacterial cellulose, tunicates, and wood pulps. The concentrated acid firstly 

attacks and hydrolyzes the hemi- and amorphous (defects) parts of native cellulose. After the 

hydrolysis, the high crystallinity regions remain intact (Anglès & Dufresne, 2001), which show 

rod-like nanocrystals with different morphologies in Figure 3 due to the source of native 

cellulose, including cotton (Dong et al., 1998), wood pulp (Elazzouzi-Hafraoui et al., 2007), 

ramie (Habibi et al., 2008), tunicate (Elazzouzi-Hafraoui et al., 2007), Valonia (Imai et al., 1998) 

and, bacterial cellulose (Grunert & Winter, 2002). Furthermore, different sources lead to various 

CNs dimension, including heterogeneous cross-sections and lengths, which result in the 

differences in their aspect ratio (ratio of length to width) (Moon et al., 2011). Diverse aspect 

ratio exhibits distinct CNs mechanical properties and capabilities of reinforcement (Eichhorn et 

al., 2010), which is also presented by models in Figure 4.  
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Figure 3 TEM images of dried dispersion of cellulose nanocrystals derived from (a) cotton 

(Dong et al., 1998), (b) bacterial cellulose (Grunert & Winter, 2002), (c) Tunicate 

(Elazzouzi-Hafraoui et al., 2007), (d) wood pulp (Elazzouzi-Hafraoui et al., 2007), (e) Valonia 

(Imai et al., 1998), and (f) ramie (Habibi et al., 2008).  
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Figure 4 Model plots of the Halpin-Tsai equation for a range of fiber moduli showing the 

predicted composite modulus (Ec) as a function of the aspect ratio of the fiber reinforcement. 

The model assumes a unidirectional composite sample, with no fiber-fiber interactions and a 

polypropylene matrix (Eichhorn et al., 2010).  

 

1.2 CNs applications  

1.2.1 Barrier properties 

Barrier properties are among the most important aspects in packaging applications. We are 

always attempting to find new materials which are more sustainable and have premium 

properties. Nano-cellulose is one of the materials who fulfill all of above requirements and has 

been paid more and more attention globally. As we known, conventional cellulose-based 

materials have excellent gas barrier properties due to their intrinsic structures (strong hydrogen 

bonds) (Habibi et al., 2010). According to above views, nano-cellulose is considered as a highly 

competitive candidate for barrier applications, whereas MFC/NFC and TEMPO-oxidized 

cellulose nanofibers (TOCN) have been utilized as a barrier but not the CNs. CNs has short 

length and narrow diameter, it thus has been supposed that CNs is only suitable for using as a 

filler into other polymers but not for a barrier as a coating or self-standing film (Isogai et al., 

2011). We summarize the limited numbers of publications as follows. Moreover, we provide all 

collected permeability values from literatures in the Appendix 1 (Gas and water vapor 

permeability coefficient summary).  

 

(1) Oxygen barrier 

Martinez-Sanz et al. introduced the bacterial cellulose nanocrystals (BCNs) into poly (lactic 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

9 

acid) (PLA) by electrospinning and melt mixing systems and all nanocomposites presented 

significant increases in the oxygen barrier at 0% RH (34 % reduction). Nevertheless, the oxygen 

barrier at 80% RH was only improved for BCNs loadings as low as 1 wt % (26 % reduction) 

(Martinez-Sanz et al., 2012). From another PLA reinforced by CNs report, similar improvement 

of oxygen barrier was presented reduction of 26 and 48% in oxygen permeability were obtained 

for the cast film containing 1 and 5% of surfactant modified CNs (Fortunati et al., 2012).  

 

As for CNs coating, only a few reports were related with CNs coating for improving barrier 

properties. Our group recently demonstrated that CNs combing with chitosan were used as 

layer-by-layer coating materials to significantly improve oxygen barrier (>94% oxygen 

permeability reduction) (Li et al., 2013). Also, in the topic 2 of this PhD dissertation, we 

prepared and investigated CNs coating on different substrates which revealed excellent oxygen 

barrier (>99% oxygen permeability reduction). These results exhibited the similar barrier 

capabilities with TOCN coating which is chemically modified.  

 

Oxygen permeability of self-standing CNs films were only reported once by Belbekhouche et al. 

(Belbekhouche et al., 2011). It was surprising that they demonstrated that MFC film‘s oxygen 

permeability displayed 2-order magnitudes lower than CNs film due to CNs being lower aspect 

ratio and the lower packing of the particles in films characterized by a large extent of porosity 

and MFC being entangled and high aspect ratio. This explanation however showed opposite 

views from other group who interpreted that smaller widths and aspect ratio TOCN had denser 

structures leading to excellent oxygen barrier properties (Fukuzumi et al., 2011). To better 

understand the relationship between the aspect ratios and oxygen barriers, further investigations 

are needed in the future.  

 

(2) Water vapor barrier  

The researches on water vapor permeability (PH2O) of CNs or CNs composites were relatively 

more than oxygen permeability in that cellulose is a hydrophilic material which is one of the 

most main its drawbacks. Fortunati et al. created PLA/surfactant-CNs nanocomposites by 

solvent casting and its PH2O was reduced by 34 and 15% at 1 and 5wt% CNs addition (Fortunati 

et al., 2012). CNs is evaluated as low risk potential for human beings (Kovacs et al., 2010), 

Georage and Siddaramaiah thus attempted to produce edible films by gelatin and BCNs whose 

WVP was reduced by ~24% at 4% BCNs addition in comparison with neat gelation films 

(George & Siddaramaiah, 2012). While Sanchez-Garcia et al. also produce nanocomposite 

combining carrageenan matrix/CNs and the largest reduction (71%) in PH2O was exhibited at 3 

wt% CNs addition (Sanchez-Garcia et al., 2010a). The PH2O of CNs-reinforced methycellulose 

was significantly decreased and obtained a further decrease after 50 kGy γ irradiation at films 
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containing 0.25% CNs. Poly(vinyl alcohol)/CNs‘ PH2Owas improved by crosslinking with 

poly(acrylic acid) (PAA). The 10% CNs/10% PAA/80% PVOH composition showed he best 

performance and PH2O reduction by 76% (Paralikara et al., 2008).  

 

(3) Migration barrier 

Nano-cellulose is becoming more and more popular in recent years and is considered as a safe 

and sustainable new nano-material, it therefore might have a huge potential to be applied into 

food related fields. Meanwhile, to migration from food packaging materials has been paid more 

and more attentions, since varieties of migrating substances has come into being a risk to human 

health for their toxicity or allergenicity. Based on above concerns, CNs as a functional barrier to 

limit or avoid mass transfer is emerging and so far there was only very a few related reports. 

After general overall migration test, Fortunati et al. reported that the migration level of the 

studied bio-nanocomposites (PLA/CNs) was below the overall migration limits required by the 

current normative for food packaging materials in both non-polar and polar simulants (Fortunati 

et al., 2012).  

 

1.2.2 Mechanical properties 

(1) Poly lactic acid (PLA) reinforcement 

Oksman group firstly reported that 5% CNs dispersion with PLA improved the tensile strength 

and elongation at break, compared to its unreinforced counterpart (Bondeson & Oksman, 2007a) 

and that in PLA feeding with dry and wet CNs+PVOH extrusion system, the relative small 

improvements in tensile modulus (increase by12%), tensile strength, and elongation to break for 

the nanocomposites indicated that it was principally the polyvinyl alcohol phase that was 

reinforced with whiskers but PLA phase (Bondeson & Oksman, 2007b). Regarding the silylated 

CNs, Pei et al. demonstrated that it was used to reinforce PLLA and the tensile modulus (1.4 

GPa) and tensile strength (58.6 MPa) of the nanoccomposite films were more than 20% higher 

than for pure PLLA with only 1 wt% silylated CNs, due to crystallinity effects and fine 

dispersion (Pei et al., 2010). In order to improve the affinity between the polymers and CNs, 

Goffin et al. found by dynamic mechanical thermal analysis (DMTA) that PLA-g(grafted)-CNs 

only induced a limited reinforcing effect below Tg, because of a plasticization effect of the 

grafted PLA chains on the polymer matrix, whereas above Tg the presence of nanofiller 

increases the stiffness of the material (Goffin et al., 2011a).  

 

Concerning the electrospun system, Martinez-Sanz et al. reported that the percolation-threshold 

concentration of electropun reinforced by BC-CNs is 2-3 wt %. Under this condition, The 

elastic modulus (2.16 GPa) and tensile strength (61.36 MPa) of nanocomposites increase ca. 17 

and 14 %, respectively, as compared to neat PLA, without significantly decreasing the ductility 
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of the material (Martinez-Sanz et al., 2012). 

 

(2) Polyurethanes (PU) reinforcement 

Cao et al. orderly reported that the Young‘s modulus and tensile strength of nanocomposites 

(polycaprolactone (PCL)-based water-borne polyurethane (WPU) reinforced by flax/hemp CNs) 

were 201 and 2.5 times, respectively, when the filler amount was increased from 0 to 30 wt%. 

The elongation is however reduced at break over the range from 1100 to 200% (Cao et al., 2007; 

Cao et al., 2011). With regard to the shape memory material (segmented PU, SPU), different 

concentration CNs additions into SPU after polymerization led to a increase in dynamic storage 

and tensile modulus and a decrease in deformation at break. Addition of the cellulose 

nanocrystals during the synthesis increased modulus, reduced deformability and erased the 

shape memory behavior of the SPU‘s (Auad et al., 2010). Wik et al. found that castor oil-based 

polyurethanes reinforced by 1% CNs addition showed a significant increase of tensile modulus 

(682.9 MPa), compared to the unfilled solid PU (497.5 MPa) due to the incorporation of the 

rigid particle reinforcement and the interfacial bonding (Wik et al., 2011). It was reported that 

the segmented thermo-plastic polyurethane elastomers (STPUE) reinforced by 1.5% modified 

CNs showed a much more pronounced increase in tensile modulus (21 MPa) compared to the 

neat one 9.2 (MPa) (Rueda et al., 2011). Mendez et al. demonstrated that the nanocomposite 

with the highest CNs content investigated (20% v/v) showed Young‘s modulus of 1076 MPa, 

which represents a stiffness increase of almost 2 orders of magnitude than the one of neat PU, 

which was ascribed to interfacial interactions (hydrogen bonding) between the polyurethane and 

CNs (Mendez et al., 2011).  

 

(3) Polyvinyl alcohol (PVOH) reinforcement  

For cast films, first George reported that 10% cross-linked PVOH filled with BC-CNs, which 

resulted in an improved tensile strength from 62.5 MPa to 128 MPa (increase by 105%), by the 

addition of just 4 wt% of BC-CNs by casting method. Furthermore, the elastic modulus was 

found to increase from 2 GPa to 3.4 GPa (increase by 70%) (George et al., 2011). Sequentially, 

Pakzad reported that in PVOH/PAA/CNs (80%:0%:15%) cast film system, the PAA functioned 

to reduce the agglomerate of CNs and its highest elastic modulus reached to ~7.6 GPa by AFM 

nano-indentation. This value is, however, different from the elastic modulus (1.4 GPa) result 

from tensile test due to the high degree of local heterogeneity of CNC distribution (Pakzad et al., 

2012).  

 

Regarding electrospun system, Peresin et al., demonstrated that the effect moisture on 

electropun nanofiber of PVOH (7%) and CNs was investigated and it was found that the 

plasticizing and anti-plasticizing effect of water and CNs, respectively. It was interesting that 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

12 

the CNs-loaded PVA fiber mats showed a reversible recovery in mechanical strength after 

cycling the relative humidity (Peresin et al., 2010). Afterward, Lee and Deng demonstrated that 

aligned electrspun webs of PVOH (8%) reinforced by CNs showed 87.4 MPa modulus, which 

increased by 35% comparing to the isotropic PVOH electrospun webs (Lee & Deng, 2012).  

 

(4) Polycaprolactone (PCL) reinforcement 

In modified CNs (PCL-g-CNs) and CNs with PCL nanocomposite systems, Habibi et al. 

reported that the addition of PCL-g-CNs into PCL proved to improve considerably the Young‘s 

modulus, which increases from 230.7 MPa for unfilled PCL to 582.0 MPa for nanocomposites 

containing 40% of PCL-grafted CNs. The elongation at break decreases drastically, but the 

values remain mostly better than compositions filled with unmodified CNs (Habibi et al., 2008). 

Then, Goffin reported that the Young‘s modulus of 8wt% PCL-g-CNs nanocomposites reached 

to 1500 MPa, 255% and 132% higher than the ones of neat matrix and 8wt% unmodified CNs 

nanocomposites (Goffin et al., 2011b).   

 

In the electrospun PCL system, electrospun fiber webs from PCL reinforced with 2.5% 

unmodified CNs showed ca. 1.5-fold increase in Young‘s modulus (reach 6.54 MPa) and the 

ultimate strength (1.51 MPa) compared to PCL webs (Zoppe et al., 2009).  

 

(5) Others reinforcement 

Poly(ethylene oxide)(PEO): in PEO/pentaerythritol triacrylate (PETA) reinforced by CNs 

system, the maximum tensile stress (14.22 MPa) and Young‘s modulus (39.8 MPa) of the 

crosslinked PEO/ 10%CNs composite fibrous mats increased by 377.5 and 190.5% than those 

of uncrosslinked PEO mats, and 76.5 and 127.4% than those of crosslinked PEO mats, 

respectively (Zhou et al., 2012). As for the PEO/CNs electrospun system, the electrospun 

heterogeneous mats are stronger than their homogeneous counterparts for all compositions 

(Zhou et al., 2011) and the storage moduli of aligned electrospun PEO/CNs nanocomposite 

fibers (324 MPa) are 1.5-2 times greater than those of the neat PEO counterparts (Changsarn et 

al., 2011).  

 

Natural rubber (NR): Siqueira et al. reported that, compared with neat natural rubber, Young‘s 

modulus and tensile strength of 10% CNs/NR were increased by 257 and 11 times (Siqueira et 

al., 2010). Afterward, Visakh demonstrated that the tensile strength (17.3 MPa) and storage 

modulus (3.8 MPa) of NR+CNs nanocomposite at 25°C was about 88% and 124%  in 

comparison with neat NR (Visakh et al., 2012).  

 

Starch: For plasticized starch (PS) reinforced by hemp/flax CNs system, Cao et al. found 
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significant increases in the tensile strength and Young‘s modulus, from 3.9 to 11.9 MPa and 

from 31.9 to 498.2 MPa, respectively, with increasing FCN content from 0 to 30wt% (Cao et al., 

2008b; Cao et al., 2007). Considering the relative humidity (RH) effects, for all RH levels, the 

modulus increased gradually with filler load, and above ~5% whiskers, a significant 

improvement is observed. The tensile strength and Young‘s modulus are high at lower RH 

levels, and elongation at break remains constant, irrespective of RH and filler content. With 

sorbitol, the final composite has better thermal mechanical properties than the one with glycerol 

due to glycerol functioning for transcrystallization which effectively decreases fiber matrix 

adhesion, but sorbitol which shows that a good fiber-matrix adhesion is present in the system 

favoring effective stress-transfer at the fiber/matrix interface (Mathew et al., 2008).  

 

Besides above, CNs was also used for reinforcement filler into varieties of polymers which 

include biopolymers (carboxymethyl cellulose (CMC) (Choi & Simonsen, 2006), chotisan (Sui 

et al., 2010), methylcellulose (MC) (Khan et al., 2010), cellulose acetate butyrate (Ayuk et al., 

2009; Siqueira et al., 2011), alginate (Urena-Benavides et al., 2010; Urena-Benavides & 

Kitchens, 2011, 2012), aligned cellulose nanofibers (Magalhaes et al., 2011), cellulose acetate 

(CA) (Herrera et al., 2011), silk (Huang et al., 2011; Park et al., 2012), xylan (Kohnke et al., 

2012), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) (Ten et al., 2010; Yu et al., 

2012), and gelation (George & Siddaramaiah, 2012)) and synthetic polymers (polysulfone (PSf) 

(Noorani et al., 2006, 2007), , poly(diallyldimethylammonium chloride) (PDDA) (Sui et al., 

2010), Poly(methyl vinyl ether-co-maleic acid)-Polyethylene Glycol (PMVEMA-PEG) (Goetz 

et al., 2010) polyacrylamide (PAM) (Zhou et al., 2011), polyvinylacetate (PVAc) (Mathew et al., 

2011), poly(acrylic acid) (PAA) (Pakzad et al., 2012), stereolithographic resins (Kumar et al., 

2012), healable material (Fox et al., 2012), and poly(methyl methacrylate) (PMMA) (Dong et 

al., 2012)).  

 

1.2.3 Thermal properties  

Thermal properties are usually determined by thermogravimetric analysis (TGA), differential 

scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA), which are 

able to monitoring changes of gravity (loss weight), calories (heat flow), and mechanical 

properties as a function of temperature to reflect the thermal properties, e.g. glass transition 

temperature (Tg), melting or decomposition temperature (Tm or Td), tan δ, and so on. Generally 

speaking, different CNs extraction processes and the addition of CNs into other polymers have 

influences on the thermal properties of CNs themselves and their nanocomposites, respectively. 

 

Firstly, we focus on different thermal properties of CNs resulting from their extraction 

processes. Inorganic acids are widely used for extracting CNs from different sources, such as 
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bio-residues obtained from a bioethanol pilot plant (Oksman et al., 2011), bacterial cellulose 

(BC) (Martinez-Sanz et al., 2011a), coconut husk (Rosa et al., 2010), microcrystalline cellulose 

(MCC) (Man et al., 2011; Wang et al., 2007), rice husk (Johar et al., 2012), kenaf bast 

(Kargarzadeh et al., 2012), and mengkuang leaves (Pandanus tectorius) (Sheltami et al., 2012). 

Above two extraction processes result in grafting a few of sulfate ester groups on the surface of 

CNs which lead to a lower thermal stability. Matinez-Sanz and Wang reported that 

neutralization produced a slight increase in the crystallinity index and led to a remarkable 

increase on the BCNs thermal stability and the degradation (decomposition) temperature (Td) 

shift to the higher temperature and occurred within a narrow temperature range for spherical 

CNs from MCC (Martinez-Sanz et al., 2011a; Wang et al., 2007). Besides neutralization, 

physical extractions, including ultrasonication and homogenization, could further increase the 

thermal stability to 265°C in comparison with the degradable temperature of raw material 

around 202 °C (Oksman et al., 2011), while the hydrolyzed CNs showed a two-stage 

degradation, with an initial onset of degradation around 120°C and a second step around 255 °C 

which is a typical behavior of sulphuric acid-hydrolyzed CNs. Rose et al. also demonstrated that 

higher residual lignin content was found to increase thermal stability indicating that the thermal 

properties of the CNs could be tailored by controlling reaction conditions (Rosa et al., 2010). 

Georage et al. revealed that the thermal stability of enzyme processed BC nanocrystals (BCNs) 

was almost two fold higher than sulfuric acid processed ones. The activation energy required for 

decomposition of enzyme processed BCNs was much higher than the other (George et al., 

2011).  

 

Secondly, the thermal properties of CNs-nanocomposites produced by casting method will be 

reviewed.  

 

(1) Synthesized polymers:  

Poly(methyl methacrylate) (PMMA): Liu et al. reported that the glass transition of the 

PMMA-CNs nanocomposites was shifted to lower temperatures with respect to the pure PMMA. 

The DMA data showed a marked increase in storage modulus (from 1.5 GPa for pure PMMA to 

5 GPa) for the composite sheet containing 10 wt.% CNs at 35°C due to the high modulus of 

cellulose crystals (Liu et al., 2010). Xu et al. grafted PMMAZO 

(Poly(6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate)) on the CNs surface and 

PMMAZO-grafted CNs showed smectic-to-nematic transition at 95 °C and nematic-to-isotropic 

transition at 135 °C, and exhibit analogous lyotropic liquid-crystalline phase behavior above 

135 °C. It also showed a lyotropic nematic phase in chlorobenzene above a concentration of 5.1 

wt% (Xu et al., 2008). 
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Stereolithographic Resins (SLRs): The storage modulus (E') increased steadily with increasing 

CNs content in the regimes below and above the glass transition (a remarkable modulus 

enhancement in the rubbery regime) but less pronounced in the glassy state (Kumar et al., 

2012).  

 

Polyurethane (PU): The CNs from Eucalyptus globulus favored the hard-segments 

(HSs)/soft-segments (SSs) microphase separation of the Water-borne PU (WPU), causing shifts 

of the SS glass transition temperature and the HS melting temperature toward higher 

temperatures was reported by Gao et al. (Gao et al., 2012). Auad et al. reported that CNs 

addition increased the PU SS melting and crystallization temperatures and the degree of 

crystallinity of this phase, while both neat PU and composites exhibited shape memory 

properties, with fixity and recovery values that depend on heating temperature, imposed 

deformation, deformation rate and CNs addition (Auad et al., 2012). Pei et al. however 

demonstrated that the decrease of Tg for the PU-CNs nanocomposites was due to the fact that 

the CNs are strongly associated with the HS of PU, resulting in lower fraction of hydrogen 

bonded carbonyl groups in the HS and an increase of the degree of freedom for the SS in PU 

(Pei et al., 2011). The tan δ corresponding to the glass transition of PU from DMA decreased 

with increasing CNs content, while the half height width of the peak increased. This could be 

attributed to the greatly restricted motion of PU chains resulting from the covalent bonding and 

cross-linking between PU molecules and nanoscale stiff rod-like CNs (Pei et al., 2011). In order 

to improve the compatibility of CNs with WPU, Cao et al. induced the grafting of part of the 

pre-synthesized WPU chains on the surface of CNs and the corresponding nanocomposites were 

processed by casting. Degradation temperature of nanocomposite (400 °C) was higher than 

WPU (337 °C), but started to decompose at the same temperature. From DSC, these 

grafted-WPU chains were able to form a crystalline structure on the surface of CNs, and thus 

induce the crystallization of the matrix which created a co-continuous phase (Cao et al., 2009).  

 

Polyvinyl alcohol (PVOH): Georage et al. found that the thermal stability of enzyme processed 

BCNs was almost two fold higher than sulfuric acid processed ones. Incorporation of these 

BCNs in PVOH matrix resulted in a remarkable improvement in the thermal stability as well as 

mechanical properties of nanocomposite films, which exhibited higher melting temperature (Tm) 

and enthalpy of melting (ΔHm) than those of pure PVOH, suggesting that the addition of BCNs 

should modify the thermal properties of PVOH (George et al., 2011).  

 

Starch: CNs results in an increase in the glass transition temperature due to the strong 

interactions between CNs and plasticized starch which reduce the flexibility of starch molecular 

chains (Cao et al., 2008a).  
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Poly(styrene-co-butyl acrylate) (PSBA): A significant increase of the stiffness of the acrylic 

polymer beyond the glass transition temperature was shown. MFC from Stipa tenacissima (ST) 

showed higher reinforcing effect compared to ST-CNs, probably because of higher aspect ratio 

and possibility of entanglement of the former (Ben Mabrouk et al., 2012). 

 

(2) Biopolymers:  

Carrageenan: Sanchez-Garcia et al. demonstrated that addition of cellulose microfibers to 

unplasticized carrageenan resulted in a continuous decrease in the Td for CNs loadings of up to 

3 wt%. The behavior of adding cellulose microfibers to the carrageenan containing glycerol was 

found to be rather similar to that of CNs (Sanchez-Garcia et al., 2010a).  

 

Cellulose acetate butyrate (CAB): TGA and DMTA results showed a substantial improvement 

in the thermal stability and an increase in the storage modulus of CAB reinforced with 5 and 10 

wt% CNs for both unplasticized and plasticized cellulose acetate butyrate (CAB)-CNs 

nanocomposites (Ayuk et al., 2009). Furthermore, Petersson et al. compared the storage 

modulus of CNs-CAB with layered silicates (LS)-CAB and results from DMTA showed 

improved storage modulus for a wide temperature range for both nanocomposites compared 

with the pure CAB matrix. The CNs decreased the tan δ peak temperature of the CAB whereas 

LS did not affect the tan δ peak (Petersson et al., 2009). 

 

Methylcellulose (MC): TGA curves clearly show that addition of CNs in MC-based films 

contributed to a substantial improvement in the thermal stability up to 200 °C. Melting peaks in 

DSC curves at 150 °C disappeared, which might be attributed to CNs fiber covering the surface 

as well as the interface of the MC-based films and thus stabilized the films and the second DSC 

cycle indicated that the curves do not reveal either crystalline structures or other transitions due 

to the thermal degradation/evaporation of some components during the first heating cycle of 

films (Khan et al., 2010).  

 

Natural rubber (NR): The CNs (from Capim Dourado) reinforcing effect observed above Tg of 

the matrix was higher than the one observed for other polysaccharide nanocrystals and CNs 

extracted from other sources (Siqueira et al., 2010).  

 

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Ten et al. considered the CNs as a 

nucleation agent in the nanocomposite. The cold crystallization temperature (Tcc) progressively 

decreased with the addition of CNs, but Tg was not noticeably affected (Ten et al., 2010). DMA 

results showed an increased tan delta peak temperature and broadened transition peak, 
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indicating restrained PHBV molecular mobility in the vicinity of the CNs surface (Ten et al., 

2010). Yu et al. demonstrated that decomposition temperature (T-0), temperature at 5% weight 

loss (T-5%), maximum decomposition temperature (Tmax) and complete decomposition 

temperature (Tf) increased by 51.4, 36.5, 47.1, and 52.9 °C, respectively compared to the ones 

of PHBV (Yu et al., 2012).  

 

Poly lactic acid (PLA): Lin et al. found that the addition of (acetylation) A-CNs improved the 

thermal property of the nanocomposites, but a marked drop in the storage modulus (E') of 

PLA-based nanocomposites at around 65-80°C was attributed to the glass transition effects of 

the PLA component (Lin et al., 2011).  

. 

Thirdly, electrospinning is becoming one of the most important method to produce new 

nanocomposites. Different polymers are reinforced by CNs via electrospinning. The DSC 

results showed a significant increase in Tg of the electrospun EVOH-CNs nanocomposite during 

the second heating run, which may be related to the acidic character of the nanofiller 

(Martinez-Sanz et al., 2011b). Lalia et al. demonstrated that the electrospun 

poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HP) with 2 wt% CNs exhibited high 

values of tensile modulus in the 30-150°C temperature range by DMA (Lalia et al., 2012). Dong 

et al. found that Tg of electrospun PMMA with 5wt%CNs is 123°C and Tg other percentages are 

around 125 °C, while their Tm slightly increased (2.7-4.6%) in comparison of neat PMMA 

(Dong et al., 2012). In the electrospun system of PVA reinforced by CNs, the addition of CNs 

improved the thermal stability of nanocomposite (Ago et al., 2012; Cao et al., 2011).  

 

Above we reviewed the thermal properties of CNs or CNs-reinforced nanocomposites by 

different extraction processes, casting, and electrospinning methods. Finally, the thermal 

properties of CNs-reinforced nanocomposites by other producing methods are reviewed as 

follows. Visakh et al. found that the addition of CNs had a positive impact on the E‘, tan δ peak 

position and thermal stability of the crosslinked natural rubber (NR) by masterbatch, 

compounding, and curing (Visakh et al., 2012). Bondeson et al. reported that the thermal 

properties of PLA-CNs nanocomposite modified by PVA was not improved compared to its 

unreinforced counter-part through two-feeding compounding extrusion method, probably 

because the majority of the CNs were located in the PVA phase and only a negligible amount 

was located in the PLA phase (Bondeson & Oksman, 2007b). Goffin et al. grafted PLA with 

CNs by ring-opening polymerization (PLA-g-CNs) and produced PLA nanocomposite with 

PLA-g-CNs by melting processing. The DSC and DMTA results indicated that PLA-g-CNs 

enhances their compatibility with PLA, large modification of the crystalline properties such as 

the crystallization half-time, and thus improves the final properties of the nanocomposite 
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(Goffin et al., 2011a). Through solvent-exchange method, the incorporation of CNs did not 

significantly affect the thermal stability of the phenolic resin but clearly increased the heat of 

cure, suggesting that additional cure reactions took place in presence of the CNs (Liu & Laborie, 

2011). The DSC and TGA results of rigid PU foam reinforced by CNs clearly indicated 

enhanced thermal stability (increment in Tg and Td) (Li & Ragauskas, 2012).  

 

Although only barrier, mechanical, and thermal properties have been reviewed, we could yet 

clearly realize that CNs has been applied into various polymers, mainly biopolymers, and could 

generally improve their properties significantly only through some simple methods. Moreover, 

CNs has been evaluated to be highly safe (Ni et al., 2012) and sustainable (Moon et al., 2011). 

Food packaging is one of the largest markets in the world, based on all CNs present advantages 

CNs thus will be widely used into this field and lead to more breakthroughs.  

  



PhD Dissertation of Fei LI  1 STATE OF THE ART 

19 

1.3 References  

Ago, M. et al., 2012, Lignin-Based Electrospun Nanofibers Reinforced with Cellulose 

Nanocrystals. Biomacromolecules 13: 918-926. 

Ahola, S. et al., 2008, Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose 

model films: effect of surface structure. Langmuir 24: 11592-11599. 

Alemdar, A., Sain, M., 2008, Isolation and characterization of nanofibers from agricultural 

residues – Wheat straw and soy hulls. Bioresource Technology 99: 1664-1671. 

Anglès, M. N., Dufresne, A., 2001, Plasticized Starch/Tunicin Whiskers Nanocomposite 

Materials. 2. Mechanical Behavior. Macromolecules 34: 2921-2931. 

Araki, J. et al., 1998, Flow properties of microcrystalline cellulose suspension prepared by acid 

treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering 

Aspects 142: 75-82. 

Auad, M. L. et al., 2010, Nanocomposites Made from Cellulose Nanocrystals and Tailored 

Segmented Polyurethanes. Journal of Applied Polymer Science 115: 1215-1225. 

Auad, M. L. et al., 2012, Shape memory segmented polyurethanes: dependence of behavior on 

nanocellulose addition and testing conditions. Polymer International 61: 321-327. 

Ayuk, J. E. et al., 2009, The Effect of Plasticizer and Cellulose Nanowhisker Content on the 

Dispersion and Properties of Cellulose Acetate Butyrate Nanocomposites. Journal of Applied 

Polymer Science 114: 2723-2730. 

Azizi Samir, M. A. S. et al., 2005, Review of Recent Research into Cellulosic Whiskers, Their 

Properties and Their Application in Nanocomposite Field. Biomacromolecules 6: 612-626. 

Beck-Candanedo, S. et al., 2005, Effect of Reaction Conditions on the Properties and Behavior 

of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 6: 1048-1054. 

Belbekhouche, S. et al., 2011, Water sorption behavior and gas barrier properties of cellulose 

whiskers and microfibrils films. Carbohydrate Polymers 83: 1740-1748. 

Ben Mabrouk, A. et al., 2012, Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): 

extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19: 

843-853. 

Bondeson, D. et al., 2006, Optimization of the isolation of nanocrystals from microcrystalline 

cellulose by acid hydrolysis. Cellulose 13: 171-180. 

Bondeson, D., Oksman, K., 2007a, Dispersion and characteristics of surfactant modified 

cellulose whiskers nanocomposites. Composite Interfaces 14: 617-630. 

Bondeson, D., Oksman, K., 2007b, Polylactic acid/cellulose whisker nanocomposites modified 

by polyvinyl alcohol. Composites Part a-Applied Science and Manufacturing 38: 2486-2492. 

Cao, X. et al., 2008a, Starch-based nanocomposites reinforced with flax cellulose nanocrystals. 

Express Polymer Letters 2: 502-510. 

Cao, X. D. et al., 2008b, Green composites reinforced with hemp nanocrystals in plasticized 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

20 

starch. Journal of Applied Polymer Science 109: 3804-3810. 

Cao, X. D. et al., 2007, New nanocomposite materials reinforced with flax cellulose 

nanocrystals in waterborne polyurethane. Biomacromolecules 8: 899-904. 

Cao, X. D. et al., 2009, One-pot polymerization, surface grafting, and processing of waterborne 

polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry 19: 

7137-7145. 

Cao, X. D. et al., 2011, Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass 

research and teaching platform. Current Science 100: 1172-1176. 

Chakraborty, A. et al., 2007, Dispersion of Wood Microfibers in a Matrix of Thermoplastic 

Starch and Starch-Polylactic Acid Blend. Journal of Biobased Materials and Bioenergy 1: 

71-77. 

Changsarn, S. et al., 2011, Biologically Inspired Hierarchical Design of Nanocomposites Based 

on Poly(ethylene oxide) and Cellulose Nanofibers. Macromolecular Rapid Communications 32: 

1367-1372. 

Choi, Y. J., Simonsen, J., 2006, Cellulose nanocrystal-filled carboxymethyl cellulose 

nanocomposites. Journal of Nanoscience and Nanotechnology 6: 633-639. 

de Souza Lima, M. M., Borsali, R., 2002, Static and Dynamic Light Scattering from 

Polyelectrolyte Microcrystal Cellulose. Langmuir 18: 992-996. 

Dong, H. et al., 2012, Cellulose nanocrystals as a reinforcing material for electrospun 

poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. 

Carbohydrate Polymers 87: 2488-2495. 

Dong, X. M. et al., 1998, Effect of microcrystallite preparation conditions on the formation of 

colloid crystals of cellulose. Cellulose 5: 19-32. 

Eichhorn, S. J. et al., 2010, Review: current international research into cellulose nanofibres and 

nanocomposites. Journal of Materials Science 45: 1-33. 

Elazzouzi-Hafraoui, S. et al., 2007, The Shape and Size Distribution of Crystalline 

Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 9: 57-65. 

Favier, V. et al., 1995, Polymer Nanocomposites Reinforced by Cellulose Whiskers. 

Macromolecules 28: 6365-6367. 

Filson, P. B. et al., 2009, Enzymatic-mediated production of cellulose nanocrystals from 

recycled pulp. Green Chemistry 11: 1808-1814. 

Fortunati, E. et al., 2012, Effects of modified cellulose nanocrystals on the barrier and migration 

properties of PLA nano-biocomposites. Carbohydrate Polymers 90: 948-956. 

Fox, J. et al., 2012, High-Strength, Healable, Supramolecular Polymer Nanocomposites. Journal 

of the American Chemical Society 134: 5362-5368. 

Fujisawa, S. et al., 2011, Preparation and characterization of TEMPO-oxidized cellulose 

nanofibers with different counter ions. Abstracts of Papers of the American Chemical Society 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

21 

241. 

Fukuzumi, H. et al., 2009, Properties of TEMPO-oxidized cellulose nanofiber film. Abstracts of 

Papers of the American Chemical Society 237. 

Fukuzumi, H. et al., 2011, Pore Size Determination of TEMPO-Oxidized Cellulose Nanofibril 

Films by Positron Annihilation Lifetime Spectroscopy. Biomacromolecules 12: 4057-4062. 

Gao, Z. Z. et al., 2012, Biocompatible elastomer of waterborne polyurethane based on castor oil 

and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers 87: 2068-2075. 

George, J. et al., 2011, Bacterial cellulose nanocrystals exhibiting high thermal stability and 

their polymer nanocomposites. International Journal of Biological Macromolecules 48: 50-57. 

George, J., Siddaramaiah, 2012, High performance edible nanocomposite films containing 

bacterial cellulose nanocrystals. Carbohydrate Polymers 87: 2031-2037. 

Goetz, L. et al., 2010, Poly(methyl vinyl ether-co-maleic acid)-Polyethylene Glycol 

Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules 11: 

2660-2666. 

Goffin, A. L. et al., 2011a, From Interfacial Ring-Opening Polymerization to Melt Processing of 

Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules 12: 

2456-2465. 

Goffin, A. L. et al., 2011b, Poly(epsilon-caprolactone) based nanocomposites reinforced by 

surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and 

thermo-mechanical properties. Polymer 52: 1532-1538. 

Grunert, M., Winter, W. T., 2002, Nanocomposites of Cellulose Acetate Butyrate Reinforced 

with Cellulose Nanocrystals. Journal of Polymers and the Environment 10: 27-30. 

Håkansson, H., Ahlgren, P., 2005, Acid hydrolysis of some industrial pulps: effect of hydrolysis 

conditions and raw material. Cellulose 12: 177-183. 

Habibi, Y. et al., 2008, Bionanocomposites based on poly(epsilon-caprolactone)-grafted 

cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18: 

5002-5010. 

Habibi, Y. et al., 2010, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. 

Chemical Reviews 110: 3479-3500. 

Herrera, N. V. et al., 2011, Randomly oriented and aligned cellulose fibres reinforced with 

cellulose nanowhiskers, prepared by electrospinning. Plastics Rubber and Composites 40: 

57-64. 

Huang, J. et al., 2011, Electrospinning of Bombyx mori Silk Fibroin Nanofiber Mats Reinforced 

by Cellulose Nanowhiskers. Fibers and Polymers 12: 1002-1006. 

Imai, T. et al., 1998, Unidirectional processive action of cellobiohydrolase Cel7A on Valonia 

cellulose microcrystals. FEBS Letters 432: 113-116. 

Isogai, A. et al., 2011, TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71-85. 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

22 

Iwamoto, S. et al., 2007, Nano-fibrillation of pulp fibers for the processing of transparent 

nanocomposites. Applied Physics A: Materials Science & Processing 89: 461-466. 

Iwamoto, S. et al., 2005, Optically transparent composites reinforced with plant fiber-based 

nanofibers. Applied Physics A: Materials Science & Processing 81: 1109-1112. 

Johansson, C. et al., 2012, Renewable Fibers and Bio-Based Materials for Packaging 

Applications - a Review of Recent Developments. Bioresources 7: 2506-2552. 

Johar, N. et al., 2012, Extraction, preparation and characterization of cellulose fibres and 

nanocrystals from rice husk. Industrial Crops and Products 37: 93-99. 

Kargarzadeh, H. et al., 2012, Effects of hydrolysis conditions on the morphology, crystallinity, 

and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19: 

855-866. 

Khan, R. A. et al., 2010, Production and Properties of Nanocellulose-Reinforced 

Methylcellulose-Based Biodegradable Films. Journal of Agricultural and Food Chemistry 58: 

7878-7885. 

Kohnke, T. et al., 2012, Nanoreinforced xylan-cellulose composite foams by freeze-casting. 

Green Chemistry 14: 1864-1869. 

Kovacs, T. et al., 2010, An ecotoxicological characterization of nanocrystalline cellulose (NCC). 

Nanotoxicology 4: 255-270. 

Kumar, S. et al., 2012, Reinforcement of Stereolithographic Resins for Rapid Prototyping with 

Cellulose Nanocrystals. ACS Appl Mater Interfaces. 

López-Rubio, A. et al., 2007, Enhanced film forming and film properties of amylopectin using 

micro-fibrillated cellulose. Carbohydrate Polymers 68: 718-727. 

Lalia, B. S. et al., 2012, Nanocrystalline-cellulose-reinforced 

poly(vinylidenefluoride-co-hexafluoropropylene) nanocomposite films as a separator for 

lithium ion batteries. Journal of Applied Polymer Science 126: E441-E447. 

Lee, J., Deng, Y. L., 2012, Increased mechanical properties of aligned and isotropic electrospun 

PVA nanofiber webs by cellulose nanowhisker reinforcement. Macromolecular Research 20: 

76-83. 

Li, F. et al., 2013, Tunable green oxygen barrier through layer-by-layer self-assembly of 

chitosan and cellulose nanocrystals. Carbohydrate Polymers 92: 2128-2134. 

Li, Y., Ragauskas, A. J., 2012, Ethanol organosolv lignin-based rigid polyurethane foam 

reinforced with cellulose nanowhiskers. Rsc Advances 2: 3347-3351. 

Lin, N. et al., 2011, Surface acetylation of cellulose nanocrystal and its reinforcing function in 

poly(lactic acid). Carbohydrate Polymers 83: 1834-1842. 

Liu, H. Y. et al., 2010, Fabrication and properties of transparent 

polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technology 101: 

5685-5692. 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

23 

Liu, H. Z., Laborie, M. P. G., 2011, Bio-based nanocomposites by in situ cure of phenolic 

prepolymers with cellulose whiskers. Cellulose 18: 619-630. 

Magalhaes, W. L. E. et al., 2011, Novel all-cellulose composite displaying aligned cellulose 

nanofibers reinforced with cellulose nanocrystals. Tappi Journal 10: 19-25. 

Man, Z. et al., 2011, Preparation of Cellulose Nanocrystals Using an Ionic Liquid. Journal of 

Polymers and the Environment 19: 726-731. 

Marchessault, R. H. et al., 1961, Some hydrodynamic properties of neutral suspensions of 

cellulose crystallites as related to size and shape. Journal of Colloid Science 16: 327-344. 

Martinez-Sanz, M. et al., 2011a, Optimization of the nanofabrication by acid hydrolysis of 

bacterial cellulose nanowhiskers. Carbohydrate Polymers 85: 228-236. 

Martinez-Sanz, M. et al., 2012, On the Optimization of the Dispersion of Unmodified Bacterial 

Cellulose Nanowhiskers into Polylactide Via Melt Compounding to Significantly Enhance 

Barrier and Mechanical Properties. Biomacromolecules. 

Martinez-Sanz, M. et al., 2011b, Development of electrospun EVOH fibres reinforced with 

bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose 

18: 335-347. 

Mathew, A. P. et al., 2011, Moisture Absorption Behavior and Its Impact on the Mechanical 

Properties of Cellulose Whiskers-Based Polyvinylacetate Nanocomposites. Polymer 

Engineering and Science 51: 2136-2142. 

Mathew, A. P. et al., 2008, Mechanical properties of nanocomposites from sorbitol plasticized 

starch and tunicin whiskers. Journal of Applied Polymer Science 109: 4065-4074. 

Mendez, J. et al., 2011, Bioinspired Mechanically Adaptive Polymer Nanocomposites with 

Water-Activated Shape-Memory Effect. Macromolecules 44: 6827-6835. 

Meyabadi, T. F., Dadashian, F., 2012, Optimization of Enzymatic Hydrolysis of Waste Cotton 

Fibers for Nanoparticles Production Using Response Surface Methodology. Fibers and 

Polymers 13: 313-321. 

Moon, R. J. et al., 2011, Cellulose nanomaterials review: structure, properties and 

nanocomposites. Chem Soc Rev 40: 3941-3994. 

Nakagaito, A. N. et al., 2005, Bacterial cellulose: the ultimate nano-scalar cellulose morphology 

for the production of high-strength composites. Applied Physics A: Materials Science & 

Processing 80: 93-97. 

Ni, H. et al., 2012, Cellulose nanowhiskers: Preparation, characterization and cytotoxicity 

evaluation. Bio-Medical Materials and Engineering 22: 121-127. 

Nickerson, R. F., Habrle, J. A., 1947, Cellulose Intercrystalline Structure. Industrial & 

Engineering Chemistry 39: 1507-1512. 

Nishiyama, Y., 2009, Structure and properties of the cellulose microfibril. Journal of Wood 

Science 55: 241-249. 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

24 

Noorani, S. et al., 2006, Polysulfone-cellulose nanocomposites. Cellulose Nanocomposites: 

Processing, Characterization, and Properties 938: 209-220. 

Noorani, S. et al., 2007, Nano-enabled microtechnology: polysulfone nanocomposites 

incorporating cellulose nanocrystals. Cellulose 14: 577-584. 

Okita, Y. et al., 2011, TEMPO-Oxidized Cellulose Nanofibrils Dispersed in Organic Solvents. 

Biomacromolecules 12: 518-522. 

Oksman, K. et al., 2011, Cellulose nanowhiskers separated from a bio-residue from wood 

bioethanol production. Biomass & Bioenergy 35: 146-152. 

Paakko, M. et al., 2007, Enzymatic hydrolysis combined with mechanical shearing and 

high-pressure homogenization for nanoscale cellulose fibrils and strong gels. 

Biomacromolecules 8: 1934-1941. 

Pakzad, A. et al., 2012, Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal 

membranes. Nanotechnology 23. 

Paralikara, S. A. et al., 2008, Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. 

Journal of Membrane Science 320: 248-258. 

Park, D. J. et al., 2012, Bacterial cellulose nanocrystals-embedded silk nanofibers. J Nanosci 

Nanotechnol 12: 6139-6144. 

Pei, A. H. et al., 2011, Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer 

with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules 44: 4422-4427. 

Pei, A. H. et al., 2010, Functionalized cellulose nanocrystals as biobased nucleation agents in 

poly(L-lactide) (PLLA) - Crystallization and mechanical property effects. Composites Science 

and Technology 70: 815-821. 

Peresin, M. S. et al., 2010, Effect of Moisture on Electrospun Nanofiber Composites of 

Poly(vinyl alcohol) and Cellulose Nanocrystals. Biomacromolecules 11: 2471-2477. 

Petersson, L. et al., 2009, Dispersion and Properties of Cellulose Nanowhiskers and Layered 

Silicates in Cellulose Acetate Butyrate Nanocomposites. Journal of Applied Polymer Science 

112: 2001-2009. 

Postek, M. T. et al., 2011, Development of the metrology and imaging of cellulose nanocrystals. 

Measurement Science and Technology 22: 024005. 

Roman, M., Winter, W. T., 2004, Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the 

Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 5: 1671-1677. 

Rosa, M. F. et al., 2010, Cellulose nanowhiskers from coconut husk fibers: Effect of preparation 

conditions on their thermal and morphological behavior. Carbohydrate Polymers 81: 83-92. 

Rueda, L. et al., 2011, Isocyanate-rich cellulose nanocrystals and their selective insertion in 

elastomeric polyurethane. Composites Science and Technology 71: 1953-1960. 

Saito, T. et al., 2007, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native 

cellulose. Biomacromolecules 8: 2485-2491. 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

25 

Saito, T. et al., 2006, Homogeneous Suspensions of Individualized Microfibrils from 

TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules 7: 1687-1691. 

Saito, T. et al., 2005, Distribution of carboxylate groups introduced into cotton linters by the 

TEMPO-mediated oxidation. Carbohydrate Polymers 61: 414-419. 

Sanchez-Garcia, M. D. et al., 2010, Morphology and Water Barrier Properties of 

Nanobiocomposites of k/i-Hybrid Carrageenan and Cellulose Nanowhiskers. Journal of 

Agricultural and Food Chemistry 58: 12847-12857. 

Sheltami, R. M. et al., 2012, Extraction of cellulose nanocrystals from mengkuang leaves 

(Pandanus tectorius). Carbohydrate Polymers 88: 772-779. 

Shinoda, R. et al., 2012, Relationship between Length and Degree of Polymerization of 

TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules 13: 842-849. 

Siqueira, G. et al., 2010, High reinforcing capability cellulose nanocrystals extracted from 

Syngonanthus nitens (Capim Dourado). Cellulose 17: 289-298. 

Siqueira, G. et al., 2011, Processing of cellulose nanowhiskers/cellulose acetate butyrate 

nanocomposites using sol-gel process to facilitate dispersion. Composites Science and 

Technology 71: 1886-1892. 

Siro, I., Plackett, D., 2010, Microfibrillated cellulose and new nanocomposite materials: a 

review. Cellulose 17: 459-494. 

Stenstad, P. et al., 2008, Chemical surface modifications of microfibrillated cellulose. Cellulose 

15: 35-45. 

Sui, L. et al., 2010, Brillouin Light Scattering Investigation of the Mechanical Properties of 

Layer-by-Layer Assembled Cellulose Nanocrystal Films. Macromolecules 43: 9541-9548. 

Ten, E. et al., 2010, Thermal and mechanical properties of 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) / cellulose nanowhiskers composites. Polymer 

51: 2652-2660. 

Urena-Benavides, E. E. et al., 2010, Effect of Jet Stretch and Particle Load on Cellulose 

Nanocrystal-Alginate Nanocomposite Fibers. Langmuir 26: 14263-14270. 

Urena-Benavides, E. E., Kitchens, C. L., 2011, Wide-Angle X-ray Diffraction of Cellulose 

Nanocrystal-Alginate Nanocomposite Fibers. Macromolecules 44: 3478-3484. 

Urena-Benavides, E. E., Kitchens, C. L., 2012, Cellulose Nanocrystal Reinforced Alginate 

Fibers-Biomimicry Meets Polymer Processing. Molecular Crystals and Liquid Crystals 556: 

275-287. 

Visakh, P. M. et al., 2012, Crosslinked natural rubber nanocomposites reinforced with cellulose 

whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. 

Composites Part a-Applied Science and Manufacturing 43: 735-741. 

Wang, B., Sain, M., 2007a, Dispersion of soybean stock-based nanofiber in a plastic matrix. 

Polymer International 56: 538-546. 



PhD Dissertation of Fei LI  1 STATE OF THE ART 

26 

Wang, B., Sain, M., 2007b, Isolation of nanofibers from soybean source and their reinforcing 

capability on synthetic polymers. Composites Science and Technology 67: 2521-2527. 

Wang, N. et al., 2007, Thermal degradation behaviors of spherical cellulose nanocrystals with 

sulfate groups. Polymer 48: 3486-3493. 

Wik, V. M. et al., 2011, Castor Oil-based Polyurethanes Containing Cellulose Nanocrystals. 

Polymer Engineering and Science 51: 1389-1396. 

Xu, Q. X. et al., 2008, A novel amphotropic polymer based on cellulose nanocrystals grafted 

with azo polymers. European Polymer Journal 44: 2830-2837. 

Yu, H. Y. et al., 2012, Simultaneous improvement of mechanical properties and thermal stability 

of bacterial polyester by cellulose nanocrystals. Carbohydrate Polymers 89: 971-978. 

Zhou, C. J. et al., 2011, Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite 

Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules 

12: 2617-2625. 

Zhou, C. J. et al., 2012, UV-initiated crosslinking of electrospun poly(ethylene oxide) 

nanofibers with pentaerythritol triacrylate: Effect of irradiation time and incorporated cellulose 

nanocrystals. Carbohydrate Polymers 87: 1779-1786. 

Zimmermann, T. et al., 2004, Cellulose Fibrils for Polymer Reinforcement. Advanced 

Engineering Materials 6: 754-761. 

Zoppe, J. O. et al., 2009, Reinforcing Poly(epsilon-caprolactone) Nanofibers with Cellulose 

Nanocrystals. Acs Applied Materials & Interfaces 1: 1996-2004. 

 

 



PhD Dissertation of Fei LI  2 AIM of STUDY 

27 

 

2 AIM OF STUDY 

 

Cellulose as the most abundant natural polymer in biosphere has received more and more 

attention on its sustainability, renewability, and new possible functionalities, Furthermore, 

nowadays conventional packaging materials cannot meet the increasing demands for full 

sustainability and performance; new materials therefore are discovered, synthesized, and 

developed for varieties of applications in different fields globally by a number of funded 

research groups and companies.  

 

Food packaging materials is one of the largest products we are using in daily life, but most of 

conventional materials are still based on fossil and un-renewable resources. In this PhD project, 

we propose to use cellulose nanocrystals (CNs) in combination with current food packaging 

materials in order to improve performance, especially barrier, mechanical, and anti-fog 

properties. The aim of this study is to use green material, CNs, as coatings of conventional 

plastic films, to promote the sustainability of food packaging materials, while keeping or 

improving different properties.  
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3 RESULTS AND DISCUSSION 

 

3.1 Topic/theme 1: The process, structure, morphology of different-form cellulose 

nanocrystals (CNs)  

 

Introduction  

The acidic hydrolysis methods (Araki et al., 1998; Beck-Candanedo et al., 2005; Bondeson et 

al., 2006; de Souza Lima & Borsali, 2002; Dong et al., 1998; Elazzouzi-Hafraoui et al., 2007; 

Favier et al., 1995; Håkansson & Ahlgren, 2005; Marchessault et al., 1961; Nickerson & Habrle, 

1947; Roman & Winter, 2004) were commonly used for extracting varieties of CNs from 

sources whose morphologies are characterized mainly by electronic microscopy. The 

concentrated acid firstly attacks and hydrolyzes the hemi- and amorphous (defects) parts of 

native cellulose. After the hydrolysis, the high crystallinity regions remain intact (Anglès & 

Dufresne, 2001) and the final products show rod-like nanocrystals with different morphologies 

and aspect ratio due to the source of native cellulose, including cotton (Dong et al., 1998), wood 

pulp (Elazzouzi-Hafraoui et al., 2007), ramie (Habibi et al., 2008), tunicate (Elazzouzi-Hafraoui 

et al., 2007), Valonia (Imai et al., 1998), bacterial cellulose (Grunert & Winter, 2002) and so on. 

In fact, acidic hydrolysis of native cellulose induces a rapid reduction of the degree of 

polymerizatio, which is correlated with crystals sized of the original cellulose chains 

(Håkansson & Ahlgren, 2005).  

 

The basic chemical structures of CNs are generally determined by Fourier transform infrared 

spectroscopy (FTIR) (de Mesquita et al., 2010). From the peaks of FTIR spectra, the typical 

functional groups could be confirmed efficiently and easily. Moreover, the crystallinity and 

crystal structures could be detected by X-ray diffraction (XRD) (Eichhorn et al., 2004), nuclear 

magnetic resonance NMR (Bergenstrahle et al., 2008; Koch et al., 2000; Witter et al., 2006), 

Raman spectroscopy (Šturcová et al., 2005), and neutron crystallography (Nishiyama et al., 

2008). These data combined with experimental measurements could be helpful to establish or 

validate crystal structure models or molecular simulation. At a minimum, these models are 

made for the axial length of the crystalline cellulose unit cell, often referred to in the literature 

as the c-spacing. Besides the cellulose crystal structure, the grafted groups from acidic 

hydrolysis or chemical modifications which always occur on the surface due to intact highly 

ordered CNs, are determined by FTIR (Habibi et al., 2008) or X-ray photoelectron spectroscopy 

(XPS) (Yang et al., 2011). The resolution of XPS is much higher than FTIR and is able to scan 

only a few nano meters on the surface of samples, which is quite suitable for ultrathin 
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deposition.  

 

The geometrical dimensions (length, L, and diameter, d) of CNs vary due to the different 

sources of the raw material and the hydrolytic conditions. Such variations are partially ascribed 

to the diffusion-controlled nature of the acid hydrolysis. Their morphologies are usually 

investigated by microscopy (TEM, AFM, E-SEM, (Miller & Donald, 2003) etc.) or light 

scattering techniques, including small angle neutron scattering (SANS) (Šturcová et al., 2005), 

polarized and depolarized dynamic light scattering (DLS, DDLS) (De Souza Lima et al., 2002). 

TEM images of CNs typically show aggregation of the particles, mainly due to the drying step 

for the preparation of the specimens after negative staining. Besides aggregation, additional 

instrumental artifacts usually lead to an overestimation of CNs dimensions (Elazzouzi-Hafraoui 

et al., 2007) therefore, it is suggested the use of TEM in cryogenic mode (cryo-TEM) to prevent 

aggregation. Atomic force microscopy (AFM) has been widely used to provide surface 

topography of CNs (Hanley et al., 1997; Hanley et al., 1992; Kvien et al., 2005; Miller & 

Donald, 2003). But sometimes AFM topography may show different profiles compared with 

TEM imagines, which are attributed to substrate shape perturbations induced by AFM tip and 

tip-broadening effects.   
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3.2 Materials and methods 1 

3.2.1 CNs extraction process 

Whatman No. 1 filter paper (98% cotton, pore size11 µm) or cotton linter was milled by lab 

mill into small pieces. The milled cotton was added to a preheated solution of 64% w/w sulfuric 

acid (ratio of fiber and acid 1 : 17.5 <g/mL>) and hydrolysis proceeded under vigorous stirring 

at 45 °C for 45 min. To quench the reaction, the reaction mixture was diluted with 10 

times-volume deionized water (18 MΩ cm, Millipore Milli-Q Purification System) and allowed 

to settle for 2 h. In order to concentrate the cellulose and remove excess acid and water, the 

suspension was centrifuged at 5000 rpm for 20 min. The pellet that precipitated was repeatedly 

rinsed and centrifuged with deionized water until the supernatant became turbid (after the 3
rd

 

time centrifugation).The next step was to further remove the excess sulfuric acid by dialysis. 

Before used, the dialysis tubes should be boiled in deionized water for 3 h. Further purification 

was then done by dialysis against deionized water until the effluent remained at neutral pH 

(Molecular weight cut-off, MWCO 12 000 and higher). The suspension was sonicated (UP400S 

400 W, hielscher Co., Germany) repeatedly (0.7 cycles of 15 min at 70% output) to create 

cellulose crystals of colloidal dimensions. During the ultrasonic treatment, the suspension was 

cooled with an ice water bath to avoid overheating, and the sonication process was performed in 

a plastic beaker to avoid possible ion release from glass containers. Mixed-bed research grade 

ion-exchange resin (DowexMarathonMR-3, Sigma-Aldrich) was added to the cellulose 

suspension for 24 h to complex any stray ions and was then removed by filtering through 

ashless filter paper (Muktell grade GF/C, 1.2 μm). Finally, the suspension was filtered under 

vacuum with a Whatman glass microfiber filter (grade GF/F, 0.7 μm) to remove sonicater tip 

contamination and largest cellulose-fiber agglomerates. The cellulose content of the resulting 

aqueous suspension was determined by drying several samples (1 mL) at 105 °C for 15 min 

intervals (to avoid decomposition or burning) until weight constancy, giving a cellulose 

concentration of 1 % w/w and a yield of ~50%.  

 

3.2.2 Freeze-dried powder 

Firstly, according to US patent (US 005629055A), the pH value of 1% CNs dispersion was 

adjusted to ~7 by 1M NaOH(aq) in order to gain fully charged CNs. Secondly, the dispersion 

was frozen at the -18 °C for overnight and then moved it to freeze dryer (LIO-10P). Finally, the 

freeze-dried power could be obtained and stored in tightly close bottle for conservation under 

dry conditions.   

 

3.2.3 CNs gel 

The CNs dispersion was prepared from freeze-dried powder by ultrasonication (0.7 cycle of 5 

min at 70% output). When the CNs dispersion concentration is above than 3.5% (w/w), the 
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dispersion converted into gel status.  

 

Characterization   

3.2.4 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra were recorded using a Perkin Elmer instrument (Sprectrum 100) equipped with an 

ATR. Spectra were recorded using a spectral width ranging from 650 to 4000 cm
-1

, with 4 cm
-1

 

resolution and an accumulation of 16 scans.  

 

3.2.5 Solid-state nuclear magnetic resonance (NMR) spectroscopy 

All NMR spectra were acquired at room temperature on a Bruker AVANCE-600 spectrometer 

(Bruker Spectrospin Gmbh, Rheinstetten, Germany), equipped with a 4 mm broad-band 

CP-MAS probe for solid state measurements. About 100 mg of cellulose sample were directly 

pressed into a 4 mm ZrO2 rotor without further treatment. 
13

C spectra were acquired at 150.9 

MHz using Cross Polarization (CP) and Magic Angle Spinning (MAS) at 6-10 KHz (Pines et al., 

1973). Proton decoupling was achieved with GARP-based composite pulse. Standard 

acquisition parameters were as follows: Spectral width: 75.7 KHz; acquisition time: 3.4 ms; 

relaxation delay: 2s (fast acquisition conditions); contact time for Cross Polarization: 1 ms; 

number of scans: 7000-24000. The contact time was optimised by systematic variation of the 

corresponding pulse within the 0.3-3 ms range. Adamantane was used as external chemical shift 

reference. 

 

3.2.6 XPS (X-ray photoelectron spectroscopy)  

XPS scans were acquired with a Phoibos 150 hemispherical analyzer at normal emission. X-ray 

excitation was provided by a twin anode X-ray source operated at 200 W. Mg Kα radiation 

(photon energy: 1253.6 eV) was used. The wide scans were acquired with a pass energy of 50 

eV, while detailed scans were acquired with a pass energy of 25 eV.  

 

3.2.7 Transmission electronic microscopy (TEM)  

Drops of aqueous dispersions of CNs (0.05% w/v) were deposited on carbon-coated electron 

microscope grids, negatively stained with uranyl acetate and allowed to dry. The samples were 

analyzed with a Hitachi Jeol-10084 transmission electron microscope (TEM) operated at an 

accelerating voltage of 80 kV.  

 

3.2.8 Scanning electronic microscopy (SEM)  

(1) Field emission SEM (FE-SEM) observation of the film cross-sections was carried out with a 

Zeiss Σigma field-emission microscope at 5 kV. The samples subjected to the SEM observation 

were pre-coated with gold using a Polaron E5100 Coater at 18 mA for 20 s.  
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(2) Environmental SEM (E-SEM) analysis was performed on freeze-dried CNs samples at10 kV 

with Evo 50 EP Instrumentation (Zeiss, Jena, Germany).  

 

3.2.9 Atomic force microscopy (AFM)  

An atomic force microscope (AFM, AlphaSNOM, WITec GmbH, Germany) was employed 

both to systematically study the thickness of the deposited multilayers and to analyze their 

morphology. For thickness measurements, the LbL coating on glass slides was gently scratched 

in order to expose part of the glass substrate and thus measure the thickness of the coating. 

Topography images were acquired with soft tapping mode at low oscillation amplitudes, 

stabilized by an amplitude-modulation feedback system based on the optical lever deflection 

method. Standard AFM Si probes have been used. 

 

3.2.10 Size distribution  

1% CNs dispersion was scanned by laser diffraction particle size analyzer (Mastersizer 2000, 

Malvern Instruments) wavelength from 0.020 to 2000 µm.  
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3.3 Results and discussion 1  

3.3.1 Modified process and different forms of CNs  

As mentioned in the introduction, the process of producing CNs leads to a slightly chemical 

modification of cellulose by acidic hydrolysis (Dong et al., 1998), and the detailed steps of 

process are as follows: milling, hydrolysis, centrifugation, dialysis, ultrasonication, ion 

exchange, and filtering, and freeze drying for producing CNs powder. The yield of the process 

is ca. 55%, in our case, using cotton linter as raw material. The dialysis step is the most 

time-consuming, we therefore skip this step and directly neutralize CNs suspension by 5M 

NaOH (aq) till pH ~7. The neutralization process is relatively long, since the suspension is a 

dispersion of high molecular weight of cellulose. If compared with dialysis process (3-5 days), 

neutralization is a much easier to handle and less time-consuming way. Then eliminating the 

excess ions from dispersion is through ion exchange step. Through this slightly modified 

preparation CNs process, the finally obtained product was similar with before from eye 

inspection. The ~1% dispersion is obtained directly after filtration step, which is colloid and its 

color ivory white. To improve the storability, the powder-form CNs was prepared by 

lyophilization. The specific concentrations of CNs dispersion could be prepared from 

re-dispersing CNs powder into distilled water through ultrasonication till no aggregations 

appeared and the light could pass the dispersion (colloid). If the dispersion concentration is 

higher than ~5%, CNs become to gel state after settling down due to the strong hydrogen bonds 

between cellulose molecular chains and inter molecular (Beck et al., 2012). The 1% dispersion, 

freeze-dried powder, and gel of CNs are presented in Figure 5.  

 

 

Figure 5 1% dispersion (a), freeze-dried powder (b), and 3.5% CNs gel (c), from left to right. 

The yellow parts caused by the light of the lamps. 

 

The final CNs products are grafted with a few sulfate ester groups (-O-SO3
-
) from sulfuric acid. 

The sulfate ester groups bring negative charges on the surface of CNs, which result in the 

repulsion between charged chains thereby CNs can be dispersed into water or other polar 

solvents (Viet et al., 2007). As known, the charge density of polymer chains could be adjusted 

by changing the pH values of solutions or dispersions. For CNs dispersion, when pH > 7, the 

repulsions between chains are stronger and the molecular chains might be rigid. On the other 

hand, when pH < 7, repulsions are weaker and the molecular chains might be loose. It is noticed 
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that CNs precipitate under pH<1 due to the associations between sulfate ester groups (-O-SO3
-
) 

and hydrogen ion (H
+
) from acidic condition which lead to be non-charged CNs. Based on 

above principles, flexible CNs films of pH 2 and pH 7 were casted from 1% dispersion in 

polyethylene petri disk under room temperature and presented different transparency, which are 

shown in Figure 6. Thickness of the films is 20-30 µm and the transparency of pH 2 and pH 7 

films are 88% and 63% at 550 nm, respectively.  

 

 

Figure 6 pH 7 CNs cast films (a) and (c), pH 2 CNs cast films (b) and (d). Scale 1.5 cm. 

 

3.3.2 Structure of CNs 

3.3.2.1 Fourier transform infrared spectroscopy (FTIR) 

The structures of raw material (cotton linter) and final product (freeze-dried CNs) were 

determined by FT-IR, shown in Figure 7. In raw material, pure CNs film with and without 

dialysis, the band at 3338 cm
-1

 is attributed to the O-H stretching vibration. The bands at 2899 

and 1428 cm
-1

 are characteristic of C-H stretching and bending of -CH2 groups, respectively, 

while the peaks at 1162 and 1057 cm
-1

 are ascribed to the saccharide structure (Li et al., 2009). 

The band at 1135 cm
-1

 is assigned to the SO4
2-

 which origins from sulfuric acid. This intensive 

band might be due to the skipping dialysis step, which could remove most of the substances 

(Mw > 20,000 Dalton, Sigma) including huge amount of SO4
2-

. Even though the ion exchange 

step was carried out in the modified process, it is yet not sufficient to thoroughly remove all of 

SO4
2-

. The possible solution could be increasing the amount of ion exchange resin and the 

adequate quantity should be optimized in the future work. The sulfate salt could not have 

dramatic influence to CNs nano filler usage but could change the optical properties (Nogi et al., 
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2009; Yano et al., 2005), the ion exchange step could therefore be dependent on the CNs 

applications. The sulfate ester groups in dialyzed samples were not detected because the number 

of these groups was very small. The freeze-dried powders from two processes have the highly 

similar re-dispersed properties into water. The 1% dispersions were prepared from two varieties 

of CNs under the same condition of ultrasonic treatment (70% cycle, 70% amplify, and 3 min), 

and presented in Figure 8.  

 

 

Figure 7 FTIR of the raw material cotton linters (I), freeze-dried CNs (II), and freeze-dried CNs 

(III) without dialysis 

 

 

Figure 8 1% dispersion of CNs from original (a) and modified process (b) (c).  
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From Figure 7, we could conclude that there are no significant differences before and after the 

CNs producing process, which indicates that no strongly chemical modifications occurred. 

Producing CNs by acidic hydrolysis is therefore only an extraction process from raw material 

without strongly chemical modifications. Also, some literature reported that nano cellulose are 

relatively safe for human beings (Kovacs et al., 2010), which might be widely considered and 

used as safe food contact material in future.  

 

3.3.2.2 Nuclear magnetic resonance (NMR)  

 

 

Figure 9 NMR spectra of CNs 

 
13

C-NMR spectrum of CNs freeze-dried powder is shown in Figure 9. The spectrum presented 

the characteristic signals of native cellulose (Atalla & VanderHart, 1999). The anomeric carbon, 

C-1, appears furthest downfield, at around 105 ppm. Characteristic signals of C-2, C-3 and C-5 

carbons are shown between 70 and 78 ppm. The signal between 87 and 90 ppm corresponds to 

C-4 of the highly ordered cellulose crystallite, whereas the broader upfield signals, between 79 

and 86 ppm, were assigned to the C-4 of disordered cellulose, as well as to the less ordered 

cellulose chains of the crystallite surfaces (Larsson, 2003). Also, the signal centered at 64.5 ppm 

is attributed to C-6 of ordered cellulose chains and the slight shoulder, between 60 and 63 ppm, 

is attributed to C-6 of cellulose in the amorphous and disordered component of CNs. In 

particular, the C-4 region was used for this analysis, the signals from ordered and less ordered 

regions being well separated. Larsson et al. used spectral fitting for the C-4 region of cotton 

cellulose and assigned three Lorentzian‘s lineshapes for the signals from celluloses Iα, I(α+β), and 
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Iβ and four Gaussian‘s lineshapes for the signals from para-crystalline cellulose, inaccessible 

fibril surfaces, and two accessible fibril surfaces (Larsson, 2003). The degree of cellulose 

crystallinity, in the case of CNs from cotton linter, was determined using the areas of the 

crystalline and amorphous C-4 signals according to Larsson‘s fitting (Habibi et al., 2009; 

Larsson, 2003). The results indicated that the degree of crystallinity of CNs from cotton is 

around 85%.  

 

3.3.2.3 XPS (X-ray photoelectron spectroscopy)  

 

Figure 10 XPS wide scan for CNs deposition on PET 

 

The XPS spectrum is presented in Figure 10 and CNs did show additional peaks related to 

fluorine and Na Auger signals, and did not show a nitrogen peak. Table 1 lists all the elements 

present in the analyzed samples and their atomic concentration (xi), assuming homogeneous 

samples. Raw intensities (Ai) have been corrected according to the following formula:  

𝑥𝑖 =
𝐴𝑖/𝑠𝑖

∑ 𝐴𝑛/𝑠𝑛𝑛

 

By making use of tabulated relative sensitivity factors (si)
a
. 

a
 Photoelectron cross sections from report (Reilman et al., 1976) (with θ = 60°), transmission 

function from literature (Hemminger et al., 1990) (with n = 0.5), attenuation length from related 

literature (Powell, 1988) (with p = 0.7414).  
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Table 1 Concentration of atomic species (in terms of number of atoms) for the CNs samples 

O [%] C [%] N [%] S [%] F [%] 

39.1±0.2 59.4±0.4 - 0.6±0.1 0.8±0.1 

 

From Table 1, it is shown additional peaks related to fluorine without a nitrogen peak. Fluorine 

did not come from improper handling of the samples during XPS analysis, probably from the 

impurity of raw material or sulfuric acid. The oxygen signal shows that about 90% of the 

oxygen is related to C–O bonds, while only a smaller amount (<10%) is related to O–H and 

C=O bonds, likely due to the presence of acidic groups, and thus to the presence of oxidized 

cellulose species.  

 

(1) Carbon peaks 

 

Figure 11 Carbon peaks of XPS 

 

The carbon peaks were presented in Figure 11 and decomposed into a sum of 

Gaussian/Lorentzian lineshapes with the same FWHM. The lineashpe used to model the carbon 

peaks was a weighted product of a Gaussian (~30 %) and a Lorentzian (~70%) lineshape. Peak 

C1 is associated to photoemission from C 1s orbitals in carbon atoms with C-C bonds and its 

position was set to -285.0 eV (Beamson & Briggs, 1992). Peak C2 is associated to C-O bonds, 
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peak C3 is associated to O-C-O or C=O bonds and peak C4 to O=C-O bonds. The chemical shift 

between peak C1 and C2 is 1.7±0.1 eV (ΔE12) in good agreement with the literature (Fras et al., 

2005), while ΔE13 and ΔE14 were fixed to 3.1 and 4.4 eV, according to reference (Fras et al., 

2005). Table 2 lists the results of the C 1s peak decomposition:  

 

Table 2 Carbon signal features related to different bonds 

C-C [C1%] C-O [C2%] O-C-O/C=O [C3%] O=C-O [C4%] 

10.9±0.2 69.9±0.4 16.7±0.3 2.5±0.2 

 

(2) Oxygen peaks 

 

Figure 12 Oxygen peaks of XPS 

 

The oxygen peaks were presented in Figure 12 decomposed into a sum of Gaussian/Lorentzian 

lineshapes with the same FWHM. The lineashpe used to model the oxygen peaks was a 

weighted product of a Gaussian (70 %) and a Lorentzian (30 %) lineshape. The most intense 

peak, peakO2, is associated to photoemission form O 1s orbitals in oxygen atoms bonded to one 

carbon atom (C-O bonds). The binding energy of O2 electrons is -532.9 eV, in good agreement 

with the value reported in the literature (Shen et al., 2004). Peak O1 is associated to oxygen 

atoms in carbonyl groups (C=O bonds) (Beamson & Briggs, 1992), while peak O3 is associated 

to free O-H groups (Beamson & Briggs, 1992; Marchessault et al., 1961; Shen et al., 2004). The 
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chemical shifts between peak O2 and the side peaks O1 and O3 were not fixed, and the 

optimized values are ΔE12=1.9 ±0.2 eV and ΔE23=2.2±0.1 eV. These values are somewhat 

higher than those found in the literature (ΔE12=1.6 eV and ΔE23=1.5 eV) (Da Róz et al., 2010). 

Table 3 lists the results of the O 1s peak decomposition:  

 

Table 3 Oxygen signal features related to different bonds 

C=O [O1%] C-O [O2%] O-H [O3%] 

3.2±0.2 93.7±0.5 3.1±0.3 

 

 

Figure 13 Cellulose monomer 

 

The Figure 13 represents the cellulose monomer, made by two units with molecular formula 

(C6H10O5)n. Carbons atoms are present in two different configurations, corresponding to one 

(peak C2) and two bonds (peak C3) with oxygen with an intensity ratio of 5 to 1. The oxygen to 

carbon ratio should be 0.83 (Fras et al., 2005). According to Table 1, the O/C ratio in the CNs 

sample is 0.65 (0.63 from the detailed scans analysis, see Table 4 below), smaller than expected. 

Furthermore, a considerable amount of C1 carbons (i.e. carbons without oxygen neighbors) is 

observed, which should not be present in pure cellulose. If we neglect the signal from C1 peak, 

the oxygen to carbon ratio equals 0.73, while the C3/C2 ratio 0.24, in good agreement with the 

results obtained from the XPS analysis of spin coated cellulose fibers (see reference (Da Róz et 

al., 2010)for further details).  

 

Table 4 the ratios between the peak intensities, determined from the detailed scans and corrected 

by the tabulated relative sensitivity factors. 

O/CTotal O/(C2+C3)
a
 C3/C2

a
 

0.63 (0.83) 0.73 0.24 (0.2) 

a
 Number within brackets are the expected values from bond counting arguments. 

 

According to references (Fras et al., 2005; Johansson et al., 1999), the total amount of surface 

contamination on cellulose fibers due to exposure to ambient atmosphere is 2-4% of the total 

amount of carbon. The signal from C1 peak thus cannot be attributed to atmospheric 

contamination. XPS analysis of cotton cellulose fibers (Fras et al., 2005) attribute the observed 

C1 peak to laminar layer of waxes, proteins and pectin, which conceal the cellulose backbone. 
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Reference (Fras et al., 2005) reports on the formation of acidic groups (O-C=O) upon cellulose 

fibers oxidation; these groups can, in principle, explain the existence of peak C4. The 

determination of the exact concentration of acidic groups from the C4 peak intensity is however 

not very accurate, since slight peak asymmetries in peak C3 could, in principles, almost 

completely mask the presence of this side peak.  

 

The oxygen peak of pure cellulose is expected to be composed only of O2 species. The shoulder 

at lower (absolute) binding energy can be linked to the presence of acidic groups, and thus to 

the presence of oxidized cellulose species. The quantitative estimation of O1 and O3 signal is 

affected by some uncertainty because of the vicinity of the two peaks to peak O2 and their low 

intensity.  

 

The treatment with sulfuric acid causes the grafting of the CNs with sulfate groups (i.e. the 

replacement of an O-H with an O-SO3H group) (de Mesquita et al., 2010). This explains the 

origin of the sulfur signal which has been detected in the wide scans. According to Table 1, the 

oxygen to sulfur ratio is 65:1, which means approximately 8 sulfate groups every 100 cellulose 

monomers.  

 

3.3.2.4 Morphology and dimensions of CNs by TEM, SEM, AFM and mastersizer  

(1) TEM 

 

Figure 14 TEM of CNs 
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The rod-like CNs produced from sulfuric acid hydrolysis of cotton linters were characterized by 

TEM as shown in Figure 14 Observations of the CNs obtained from diluted suspensions 

(approximate 0.05% w/w) show individual nanocrystals and some aggregates. The appearance 

of aggregated elementary crystallites in TEM images is expected due to the high specific area 

and strong hydrogen bonds established between the CNs. From several TEM images, the mean 

values of the length (L) and diameter (D) of the isolated CNs were determined to be 145±25 nm 

and 6±1.5 nm, respectively, giving an aspect ratio (L/D) of around 24. These dimensions agreed 

well with the literature values reported for CNs (Dufresne, 2008). However, a wide distribution 

of CNs size, especially the length, is inevitable owing to the acid diffusion-controlled nature of 

the hydrolysis (Podsiadlo et al., 2005).  

 

(2) SEM 

 

Figure 15 Freeze-dried CNs powder observed by FE-SEM (a) and E-SEM (b), CNs casting film 

(c), and CNs deposition on PET observed by FE-SEM (d). 

 

The high-resolution FE-SEM or E-SEM figures of CNs freeze-dried powder, casting film, and 

deposition are presented in Figure 15. The image clearly shows highly dense packing and 

uniform nanofibers likely due to the hydrogen bonds formed during the drying process. The 

dense packing of the CNs has been previously described in other reports (Podsiadlo et al., 2005). 
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Meanwhile, the morphologies of CNs network present the porous surfaces, which probably will 

have some influences on the final properties, such as gas barrier. It was reported that different 

porosities, caused by diverse original cellulose sources, led to significantly distinct gas barrier 

properties (Fukuzumi et al., 2011). The SEM figures could be only used to estimate the profile 

and dimension of CNs, since the CNs real morphology is covered by gold particles which is 

used to make the CNs more conductive for better resolution observations.  

 

(3) AFM 

 

Figure 16 High-resolution AFM of CNs deposition on OPA substrate 

 

The bundles of CNs are shown in Figure 16. The CNs are clearly presented but majority of 

them are swelling and aggregating each other, since the deposition origins from 3.5% (w/w) 

CNs dispersion and then was dried by air dryer. The air drying step results in the aggregating 

via strong hydrogen bonds and swelling phenomena was caused by the small water content in 

CNs deposition. This AFM figure might not therefore indicate the exact dimension of CNs, but 

it could reveal the profile (shape) of CNs. In this case, the shape of CNs is clearly rod like, 

highly agreement with other reports (Edgar & Gray, 2003; Lefebvre & Gray, 2005).  
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(4) CNs size distribution 

 

Figure 17 Particle size distribution of 1% CNs dispersion 

 

The particle size distribution of 1% CNs dispersion is shown in Figure 17. It indicates that the 

range of the CNs length is from 90 to 160 nm, which is similar with the most precise results 

obtained from TEM and other literatures (Habibi et al., 2010). Compared with TEM-CNs 

dimension, the one from particle size distribution has larger range. It is reasonable that larger 

ranges are due to different forms of CNs. Since the working range of this instrument 

(Mastersizer 2000) is from 0.020 to 2000.00 µm, the average of CNs diameter (~6 nm), which 

is beyond, the work range could not be obtained from Figure 17. The results disclose that the 

acidic hydrolysis process is highly compatible and effective to extract relatively uniform CNs 

from cotton linter, because this measurement was carried out for size distribution of dispersion 

not only limited to local dimensions.  

 

The dimension of CNs was determined by different advanced techniques, including TEM, 

FE-/E-SEM, AFM, and particle size distributor, respectively. In our case, the most efficient and 

illustrative method is TEM, since the dimension (diameter and length) are easily obtained from 

high resolution figures. But for TEM, the limitations are related with small observation area 

(highly locally dependent) and vacuum working condition which sometimes leads to 

agglomeration and change the original morphology of samples. For example, the CNs are 

strongly aggregated with each other under the vacuum due to the hydrogen bonds (Habibi et al., 

2010). As for the SEM, all of observations could be carried out under vacuum and it is more 

suitable for the surface morphology of samples at relatively larger scale. FE-SEM could provide 

high-resolution images even at small scale but the conductive samples and vacuum condition 
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are required, while E-SEM could observe samples under ambient condition and no requirements 

for samples. For AFM, it is a very powerful tool for observations and no special requirements 

for samples and testing conditions. Through AFM, the dimension and morphology could be 

gained easily and efficiently even at larger scale. The dimension for AFM from figure is not as 

accurate as the one from TEM and particle size distributor, since the CNs were aggregated with 

each other in the deposition and influenced by surroundings, such as temperature, humidity and 

so on. To obtain precise dimension of CNs, it is suggested that relatively lower concentration of 

CNs dispersion should be prepared for TEM and particle size distributor. 
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3.4 Conclusions 1 

To better understand the structure and status of CNs itself or in other polymers, we used 

different powerful tools for qualification and quantification. Firstly, we have obtained the 

relatively precise dimensions of CNs and observe its re-dispersability in different solvents, in 

our case in water. In the following, we could gain the information of the CNs status in other 

polymers in order to interpret the final performance efficiently. Finally, if we observe individual 

crystals, TEM is the most suitable tool; if we estimate the roughness, AFM is the most efficient 

tool; if we generally learn the morphology in different scale, the SEM is the best choice. As for 

the size distribution, functional groups, and interactions between the atoms of CNs, the particle 

size distributor, FTIR, XPS, and NMR are used for determinations, respectively.  
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3.6 Topic/theme 2: Multi-functional green coating of cellulose nanocrystals (CNs) on 

conventional films for food packaging applications 

 

Introduction 

Nowadays, the vast majority of flexible food packaging materials is constituted of oil-based 

plastics whose resources are non-renewable, resulting in low sustainability. Considering the 

issues, the interest in bio-based materials have been rising, such as poly lactic acid (PLA) 

(Auras et al., 2004; Drumright et al., 2000; Lim et al., 2008; Vert et al., 1995), starch,(Avella et 

al., 2005; Tharanathan, 2003) and so on. However, such materials are not yet widely applied 

because of their inferior properties (Krikorian & Pochan, 2003; Ray et al., 2002, 2003) and high 

cost, compared with conventional ones. Therefore, it is likely that there will be a long journey 

for substituting bio-based materials for conventional plastics.  

 

The use of plastic materials also poses a challenge in finding appropriate strategies to improve 

their barrier properties. In current research, inorganic fillers, such as SiO2 (Creatore et al., 2002; 

Erlat et al., 1999; Haas et al., 1999) or nano-clays (Ghasemi et al., 2012; Priolo et al., 2010; 

Sánchez-Valdes et al., 2006; Svagan et al., 2012) are used for coatings or composites as oxygen 

or water vapor barriers with inevitable disadvantages that include a tendency to crack,(Priolo et 

al., 2010) and potential health risks (Lordan et al., 2011). Therefore, there is an increasing 

tendency to at least partially replace conventional plastics with bio-based materials, for instance, 

utilizing bio-coatings with the two-fold aim of improving the original plastic properties and 

reducing the plastic use, thereby, increasing the sustainability. Bio-coatings can, therefore, be 

considered as one of the suitable solutions for food packaging applications. Nevertheless, the 

number of directly related bio-coating publications is still limited. Gelation (Farris et al., 2009), 

or pullulan (Farris et al., 2012) have been recently reported as oxygen barriers on PET or OPP 

plastic films. Isoga et al. (Kato et al., 2005) compared the oxygen barrier properties of 12 

μm-thick PET films coated by TEMPO-oxidized microcrystalline cellulose, chitosan and starch, 

whilst TEMPO-oxidized nano-fiber coatings have been demonstrated as an oxygen barrier on 

PLA film (Fukuzumi et al., 2008). Besides cast coating, some research groups successfully 

improved barrier properties of food packaging materials through layer-by-layer (LbL) assembly 

(de Mesquita et al., 2010; Jang et al., 2008; Priolo et al., 2010; Svagan et al., 2012; Yang et al., 

2011b; Zhang & Sun, 2010). However, TEMPO-oxidized and LbL coating process might be 

difficult to be applied at the industrial scale due to their safety, cost and process complexity.  

 

In this part of the PhD thesis, we thoroughly investigate the physical, mechanical, and optical 

properties of bio-coating made of cellulose nanocrystals (CNs), which can be obtained from the 
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most abundant natural polymer on earth. Besides the promising results that are discussed 

throughout the paper, such material brings advantages also in terms of low weight, low cost, 

and biodegradability. Over the last few years, CNs have been extracted from different original 

sources by chemical, physical, enzymatic or a combination of them (Siro & Plackett, 2010). 

However, physical and enzymatic processes imply high cost and high energy consumption, 

respectively, hence we choose a chemical-hydrolysis method for their production from cotton 

linter, whose thorough characterization has been the focus of the first part of this project, and 

we deposit them on different conventional flexible food packaging materials to produce a 

multi-functional coating. In particular, we use a water dispersion of CNs, with relatively low 

concentration, deposited on polyethylene terephthalate (PET), oriented polypropylene (OPP), 

oriented polyamide (OPA) and cellophane films. The morphology, coefficient of friction, 

anti-fog, and oxygen and water vapor barrier properties of coated films were measured and 

interpreted systematically.   
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3.7 Materials and methods 2 

3.7.1 Materials.  

Cotton linter was provided by S.S.C.C.P. (Milan, Italy), as the raw material to produce CNs.  

Four different plastic substrates were coated and used for experiments: (1) poly(ethylene 

terephthalate) (PET, 12.0±0.5 μm thickness, Radici Film, San Giorgio di Nogaro, Italy) , (2) 

oriented polypropylene (OPP, 20± 0.5 μm thickness, San Giorgio di Nogaro, Italy), (3) oriented 

polyamide (OPA, 12 ±0.5 μm thickness, San Giorgio di Nogaro, Italy), and cellophane (12 ± 0.5 

μm thickness, San Giorgio di Nogaro, Italy).  

 

3.7.2 CNs producing process.  

As described in 3.1, the brief process of producing CNs is as follow. 1% Cellulose nanocrystals 

(CNs) dispersion was produced from cotton linter using a procedure already established for 

cotton from powdered filter paper (Dong et al., 1998). Briefly, milled cotton linter was 

hydrolyzed by 64% (w/w) sulfuric acid with vigorous stirring at 45 °C for 45 minutes. The 

reaction mixture was diluted with 10 times-volume deionized water (resistivity, 18.2 MΩ cm, 

Millipore Milli-Q Purification System), settled for 2 hours, and then rinsed and centrifuged at 

5000 rpm repeatedly until the supernatant became turbid. Further purification was then done by 

dialysis against deionized water until the effluent remained at neutral pH (MWCO 12 000 and 

higher). Sequentially, the suspension was sonicated (UP400S 400 W, Hielscher Co., Germany) 

repeatedly (0.7 cycles of 5 min at 70% output) to create cellulose crystals of colloidal 

dimensions. Finally, the suspension was filtered under vacuum with Muktell (grade GF/C, 1.2 

μm pore diameter) and Whatman glass microfiber filter (grade GF/F, 0.7 μm pore diameter) to 

remove contamination and big aggregations. The CNs content of the resulting aqueous 

suspension was determined by drying several samples (1 ml) at 105 °C for 15 min intervals (to 

avoid decomposition or burning) until weight constancy, giving a cellulose concentration of ~1 % 

w/w and a yield of ~50%. To prepare a given concentration of CNs solution, the resulting CNs 

dispersion was adjusted pH to ~7 by 1M NaOH(aq), freeze-dried and stored in tightly sealed 

container under dry conditions for later analysis and experiments.  

 

3.7.3 Preparation of Coating Dispersion.  

A 3.5 wt% CNs water dispersion was obtained by dissolving the CNs into distilled water 

assisted with ultrasonic treatments until the dispersion became visually homogenous. During the 

process, the sonication should be carried out every ten minute under water bath to avoid 

overheating. After recovering to room temperature, the CNs dispersion was coated on different 

plastic substrates.  
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3.7.4 Coated Film Preparation.  

According to ASTM D823-07, practice C, the corona-treated sides of rectangular (25×20 cm
2
) 

four different plastic films were coated by an automatic film applicator (ref 1137, Sheen 

Instruments, Kingston, U.K., shown in Figure 18) at a constant speed of 2.5 mm s
-1

. In this 

work, the 24 µm bar was used for coatings on different substrates, whose final thickness is ca. 

0.6 µm. It is noticed that the horizontal flat is one of the most important factors to obtain 

homogenous CNs coating. Water was evaporated using a constant mild flowing air (25±0.3 °C 

for 5 min) at a perpendicular distance of 40 cm from the automatic applicator. The coated films 

were stored under controlled conditions (20±2 °C, 45±2.0% RH) for 24 h, and then stored in 

sealed anhydrous desiccators for 24 h before analysis.  

 

Figure 18 Automatic applicator  

 

3.7.5 Thickness measurement 

For the coating thickness measurement, a 10 × 10 cm
2
 sample (plastic substrate with coating) 

was cut and weighed (m1, g). The coating was removed by running hot water (~70 °C), and then 

the resulting bare film was weighed (m2, g). The coating thickness (L, μm) was obtained 

according to the following equation:  
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𝐿 =
𝑚1−𝑚2

𝜌
× 100                               (1) 

where ρ (g cm
-3

) is the density of CNs (~1.58 g cm
-3

)
 
(Mazeau & Heux, 2003). Three 

replications were determined.  

 

3.7.6 Transmission Electron Microscopy.  

Drops of aqueous dispersions of CNs (0.05% w/v) were deposited on carbon-coated electron 

microscope grids, negatively stained with uranyl acetate and allowed to dry. The samples were 

analyzed with a Hitachi Jeol-10084 transmission electron microscope (TEM) operated at an 

accelerating voltage of 80 kV.  

 

3.7.7 Atomic force microscopy 

Atomic-force microscopy (AFM) topography images have been acquired in tapping mode with 

a Veeco Innova instrument. Super-sharp silicon probes (typical radius of curvature 2 nm) have 

been used for high-resolution imaging of nanocrystals, while standard silicon probes have been 

employed for large-area scans in order to evaluate the sample roughness.  

The root mean square roughness S is calculated as the standard deviation of the topography  

(M × N pixels):  
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where 𝑧̅ is the mean value of the topography z(x, y). 

 

3.7.8 Transparency measurements 

The transmittance of the sample was measured at a wavelength of 550 nm, according to the 

ASTM D 1746-70, by means of a Perkin-Elmer L650 spectro-photometer. 

 

3.7.9 Haze  

Haze was measured in accordance with ASTM D 1003-61 with spectrophotometer (Perkin 

Elmer L650). The haze values of uncoated and coated films were obtained as (Lee et al., 2008):  

haze = 100 ×
𝐼s

𝐼T
,                               (3) 

where Is and IT are the scattered and total transmitted light, respectively. 

 

3.7.10 Oxygen Transmission Rate (OTR), oxygen permeability (PO2) and Water Vapor 

Transmission Rate (WVTR) measurements.  

The OTR and WVTR of CNs coated plastic films were tested by permeation instrument 
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(MOCON, OX-TRAN
®
 Model 702 and PERMATRAN-W

®
 Model 700) under the 23 °C and 0% 

relative humidity(RH) for OTR and 38 °C and 90% RH for WVTR, complying with ASTM 

D-3985, F-1927, F-1307 (OTR) and ASTM F-1249 (WVTR), respectively.  

 

The PO2 of the CNs coating in the coated film [i.e., PO2 (Coating)] was calculated using the 

following equation (Lee et al., 2008): 

1

PO2(coated A − PET)
=  

1

PO2(coating)
+  

1

PO2(A − PET)
 

 

3.7.11 Contact angle measurements  

Contact angles were measured to estimate the surface energies of the tested substrates by OCA 

15 Plus angle goniometer (Data Physics Instruments GmbH, Filderstadt, Germany). The 

softwares (SCA20 and SCA21) delivered by the instrument manufacturer calculates the contact 

angles on the basis of a numerical solution of the full Young-Laplace equation and surface 

energy. Measurements of static and advancing contact angle were performed at room 

temperature with three liquids: two polar: Milli-Q water and formamide (FOM, ≥99.5%, Carlo 

Erba, Milan); one apolar diiodomethane (DIM, 99%, Sigma Aldrich) at minimal five different 

positions on each sample. The surface energies were calculated from the contact angle data at 

equilibrium by the Van Oss method (Van Oss, 2006), which divides the total surface free energy 

into two components, the dispersive and the polar components, where the polar interactions 

originate from the Lewis acid-base interactions  

 

𝛾𝑠
𝑡𝑜𝑡𝑎𝑙 = 𝛾𝑠

D + 𝛾𝑠
P                             (4) 

where  

𝛾𝑠
P = 2√𝛾𝑠

+𝛾𝑠
−                               (5) 

The subscripts indicate the solid, s, or liquid, l, phase, and 𝛾𝑠
LW  and 𝛾𝑠

AB  refer to the 

dispersive and polar components of the total surface energy, respectively. 𝛾+ is the acceptor 

and 𝛾− the donor part of the Lewis acid-base interactions.  

 

When combined with Young‘s equation, the equations developed by Chaudhury, Good, and Van 

Oss yield the equation 

𝛾𝑙(1 + cos𝜃) = 2(√𝛾𝑙
D𝛾𝑠

D + √𝛾𝑠
+𝛾𝑙

− + √𝛾𝑠
−𝛾𝑙

+)         (6) 

Where, θ is contact angle (°), 𝛾𝑙  is the liquid surface tension (mJ/m
2
), and 𝛾𝑠

+, 𝛾𝑙
−and 𝛾𝑠

−, 𝛾𝑙
+ 

are the acid and base contributions to the surface energies of the solid and liquid, respectively 

(mJ/m
2
). The values of the surface tension and its components for the liquids that were used in 

calculations were determined by Van Oss (van Oss, 2003). Water, formamide, and 
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diiodomethane, with known 𝛾𝑙
D, 𝛾𝑙

+,and 𝛾𝑙
− values (Table 5), and measured contact angle (θ) 

were used to determine the 𝛾𝑠
D, 𝛾𝑠

+,and 𝛾𝑠
− combined with Equation (6). Finally, 𝛾𝑠

𝑡𝑜𝑡𝑎𝑙 and 

𝛾𝑠
P were calculated from Equation (4) and (5).  

 

Table 5 Surface tension components and paprmeters of liquids used in direct contact angle 

determination in mJ/m
2
, at 20 °C (Van Oss, 2006) 

Liquid 𝛾𝑙 𝛾𝑙
D 𝛾𝑙

P 𝛾𝑙
+ 𝛾𝑙

− 

APOLAR      

Diiodomethane 50.8 50.8 0 ≈0 0 

POLAR      

Water 72.8 21.8 51.0 25.5 25.5 

Formamide 58.0 39.0 19.0 2.28 39.6 

 

3.7.12 Coefficient of friction.  

The static (µS) and kinetic (µd) friction coefficients were measured by a dynamometer (model 

Z005, Zwick Roell, Ulm, Germany), in accordance with the standard method ASTM D 1894-87. 

38 The software TestXpert V10.11 (Zwick Roell, Ulm, Germany) Master was used for data 

analysis. 5 replications for each sample. 
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3.8 Results and discussion 2  

3.8.1 Morphology of CNs and CNs on different substrates  

 

Figure 19 TEM image of individual CNs 

 

The rod-like CNs produced from sulfuric acid hydrolysis of cotton linters were characterized by 

TEM as shown in Figure 19. CNs observations obtained from diluted dispersion (approximate 

0.05% w/w) show individual nanocrystals and some aggregates. The appearance of aggregated 

elementary crystallites in TEM images is expected due to the high specific area and strong 

hydrogen bonds established between the CNs. From several TEM images, the mean values of 

the length (L) and diameter (d) of the isolated CNs were determined to be 150±30 nm and 6±3 

nm, respectively, giving an aspect ratio (L/d) ~25. Similar dimensions have been reported in the 

literatures (Angles & Dufresne, 2000; Elazzouzi-Hafraoui et al., 2007) . However, a wide 

distribution of CNs size, especially of their length, is inevitable owing to the acid 

diffusion-controlled nature of the hydrolysis (de Mesquita et al., 2010). It means that the from 

the molecular level point of view, the diffusion of sulfuric acid is relatively inhomogeneous 

which results in the different hydrolysis degree of cotton linter, thereby leads to a relatively 

wide distribution of CNs size. The size distribution was presented in 3.3.2.4 (4).  
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Figure 20 High-resolution AFM images of CNs-coated films, coated PET (a), OPP (b), 

cellophane (c), and OPA (d).  

 

Figure 20 shows high-resolution AFM images of CNs-coated films. The image clearly shows a 

dense packing and uniform coverage of nanofibers. A dense packing of CNs has been 

previously described in other reports (Fujisawa et al., 2011). The continuous layer of 

overlapping CNs fibers (Siró & Plackett, 2010) points towards possible improvements in the 

oxygen barrier properties of the different substrates, which we will demonstrate and discuss 

later on.  

 

3.8.2 Coefficient of friction of bare and coated substrates 

The values for the coefficient of friction (COF) of CNs-coated films against films are presented 

in Table 6. By means of the statistical analysis, we conclude that the casting deposition created 

a completely new CNs-coating layer on different substrates with one exception. In fact, it can be 

clearly noted that three of the investigated systems (coated-PET, OPA, and cellophane) present 

similar values in dynamic (µd) COFs, while only CNs-coated OPP is significantly different from 

the other coated films probably due to weak adhesion between CNs coating and OPP surface 
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which leads to the removal of CNs from substrate during dynamic measurements. The COF 

results and oxygen permeability shown later indicate that for 600 nm CNs coating, a 

homogenous independent CNs layer was established by cast coating.  

 

Table 6 Plastic films (Ex) against plastic film (In)  

Substrate 
Bare (Ex) Coated (600 nm

a
) 

µs µd µs µd 

PET 0.57±0.02
D
 0.52±0.03

H
 0.38±0.01

C
 0.33±0.01

G
 

OPP 0.18±0.01
A
 0.17±0.00

F
 0.30±0.02

B
 0.18±0.01

F
 

OPA 0.79±0.02
E
 0.74±0.03

J
 0.32±0.01

BC
 0.32±0.02

G
 

Cellophane 0.62±0.03
D
 0.57±0.01

I
 0.38±0.02

C
 0.34±0.01

G
 

a
 Thickness of CNs coating  

A
 to 

E
, different letters mean that static COFs are significantly different (p<0.01);  

F
 to 

J
, different letters mean that dynamic COFs are significantly different (p<0.01).  

 

Table 7 Roughness of bare and coated substrates 

Substrates PET OPP Cellophane OPA 

10×10 

µm
2
 

Bare 
Coate

d 

Bare 
Coate

d 

Bare 
Coate

d 

Bare 
Coate

d 
Ex

a
 

In
b
 

Ex
a
 

In
b
 

Ex
a
 

In
b
 

Ex
a
 

In
b
 

Roughnes

s (nm) 
10 3 6 2 7 6 4 2 13 21 8 11 

a
 External side of substrates, which generally were treated by corona;  

b
 Internal side of substrates, which usually were not treated.  

 

In order to complement the COF data with those for the sample roughness, we acquired 

large-area AFM images, as shown in Figure 21, where cobble stone pathway like aggregations 

of CNs where cobble-stone pathway-like aggregations of CNs due to the strong hydrogen bonds 

are visible in all images, which are qualitatively very similar with each other. Roughness values 

calculated from such AFM investigations all lay in the 6-13 nm range (see Table 7), which is 

definitely lower than the one of bare films from 2-21 nm (external side). We therefore could 

conclude that a new CNs layer was homogeneously established on different substrates.   

 

Generally speaking, CNs coating could result in improvements of practical applications, 

reduction of friction between the films, which probably lead to a premium feature for industrial 

applications.  
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Figure 21 AFM for roughness of coated substrates, coated PET (a), OPP (b), OPA (c), and 

cellophane (d). 

 

3.8.3 Optical properties  

 

Table 8 Transparency at 550 nm and haze of bare and CNs-coated films 

Substrates 
Transparency (%) Haze (%) 

Bare CNs-coated Bare CNs-coated 

PET 88.0±0.2 89.4±0.2 2.7±0.1 5.1±0.2 

OPP 91.9±0.0 91.3±0.2 2.9±0.1 5.2±0.2 

OPA 89.7±0.3 90.3±0.1 4.1±0.1 6.2±1.0 

Cellophane 87.6±0.2 88.5±0.4 4.3±0.1 5.8±0.1 

 

Regarding the optical properties of CNs-coated films, results from transparency and haze 

measurements in Table 8 show that the CNs-coated films still maintain high transparency, as 

requested to ensure easy evaluation of the product quality by eye inspection. The excellent 

optical properties are attributed to the thin CNs coating (around 600 nm, as determined by 

weighting the samples). Nevertheless, small reduction and increase of the transparency and haze 

values, respectively, are due to the nano-scale dimensions of CNs. Moreover, it is noticed that 

the transmittance values at 300 nm reduced by 10% with CNs-OPP film, which indicates that 

CNs coating slightly decrease the UV light.  

 

3.8.4 Anti-fog property  

Boiling water and breathe (Huff) tests both showed that the CNs-coated films have excellent 

anti-fog property, which are presented in Figure 22(b). Particularly, we deposited 3.5% CNs 

directly on different substrates without any primers or any chemicals to guarantee the safety of 

food contact. In Figure 22 we show the results for the coated OPP film, since OPP it is the most 

hydrophobic material among the substrates under investigation, but very similar results were 

obtained for all the substrates. We observed the border (the blue dashed line) between bare and 
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coated films through the fog from our eye inspection. In order to observe the anti-fog property 

better, we set a black sponge in the water containers, as shown in Figure 22. As known, fog is 

formed by small discontinuous water droplets which could reflect the incident light, thereby 

decrease the transparency and increase the haze (Introzzi et al., 2012; Nuraje et al., 2010). 

Figure 22(a) and (c) obtained from optical microscopy, presents two parts, uncoated part with 

water droplets which forms fog and coated part homogeneous water layer without any droplets, 

which remained transparent. In the following part, we will further interpret the excellent 

anti-fog of CNs-coated films from the comparison of surface energies obtained from contact 

angle goniometery.  

 

 

Figure 22 Boiling water test; the foggy bare OPP photo from optical microscope, (a); 

comparison of bare and CNs-coated OPP during the test, (b); the border between CNs-coated 

and bare parts taken form optical microscope, (c).  

 

Table 9a Static contact angles of bare and CNs-coated films 

Films 
Static CA

a
 

θWater(°) θDIM(°)
 b

 θFOM(°)
 b
 

Bare PET 57.44±5.84 22.41±2.73 39.55±1.77 

Bare OPP 63.03±1.00 52.22±1.61 41.39±1.70 

CNs-PET 12.32±1.33 37.15±3.02 7.41±1.33 

CNs-OPP 12.08±0.95 36.37±1.70 8.78±0.73 

 

Table 9b Advancing contact angles of bare and CNs-coated films 

Films 
Advancing CA

a
 

θWater(°) θWater(°)
b
 θWater(°)

b
 

Bare PET 72.57±2.96 72.57±2.96 72.57±2.96 

Bare OPP 90.06±1.84 90.06±1.84 90.06±1.84 

CNs-PET 26.29±3.27 26.29±3.27 26.29±3.27 

CNs-OPP 27.33±3.07 27.33±3.07 27.33±3.07 

a
 static contact angle values recorded at 60

th
 second 

b
 Diiodomethane, DIM and formamide, FOM  
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We did static and dynamic (advancing) contact angle measurements specifically on PET and 

OPP which have different wettability and are the most widely used in food packaging field. 

From Table 9a, we could notice that the CNs-coating showed highly similar static contact 

angles, which indicates that the completely new CNs layer was established through cast coating 

process. Moreover, the static contact angles of CNs coated substrates presented much lower 

than the ones of bare substrates, since cellulose chains are full of hydroxyl (-OH) groups 

leading to very hydrophilic.  

 

We will use advancing contact angles (shown in Table 9b) of CNs coating to interpret the 

principles behind the anti-fog performance. It was reported that one possible measure of the 

level of interaction of water with a material is the advancing contact angle and it has been 

suggested that hydrophilic surfaces with values less than 40° should exhibit anti-fog behavior 

(Briscoe & Galvin, 1991; Howarter & Youngblood, 2008). The advancing contact angle value 

(θWater) of CNs-coated films is around 26.5°, which is much lower the 40° thereby leads to 

excellent anti-fog performance.  
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(b) 

Figure 23 Surface energies and their respective polar and dispersive components of bare and 

CNs-coated PET and OPP, (a); the electron-acceptor and donor of polar component, (b)  

 

To further interpret the anti-fog behavior, we calculated the surface energies values from static 

contact angles, which were presented in the Figure 23. Contact angles were measured by using 

water, FOM, and DIM to provide information regarding the contributions of dispersive (D) and 

polar (P) components to the total surface energy of the substrates. The calculated values in 

Figure 23 show that the dispersive part of the cellulose surface energy is larger than the polar 

contribution, since the surface energy of cellulose determined by contact angle measurements is 

known to be ~55 mJ/m
2
 (Aulin et al., 2009). Also, a surface energy of CNs films on different 

substrates was reported as high as 65 mJ/m
2
 with ±15% experimental error (Kontturi et al., 

2007). These values are consistent with the values obtained in our results of CNs-coated PET 

and OPP. From Figure 23a, CNs-coated PET and OPP, have the similar surface energies. As the 

Van Oss method (Van Oss et al., 1989) frequently used to determine surface energies often 

results in surfaces with basic characteristics or electron-donor properties (Aulin et al., 2009), yet 

in our case this method discloses that the thin CNs coating could provide an independent and 

homogeneous basic layer on PET and OPP substrates which did not have significant influences 

to surface energies of CNs coating. From γs
+
 and γs

-
 values shown in Figure 23b, we could well 

interpret different anti-fog performances between bare and coated films. The electron-donor 

component (γs
-
) values of coated PET and OPP are at least 2 and 3.8 times of bare ones, while 

the electron-acceptor component (γs
+
) have some differences but since the absolute values are 

small, thus we could consider them similar and also Van Oss (Van Oss, 2006) mentioned that 

electron-acceptor/electron-donor interactions are essentially asymmetrical in the sense that of a 
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given polar substrate and the electron-acceptor and donor components are quite different, which 

suggested normally only one of two parameters has the significant influence to the final 

performance. Moreover, cellulose always presents polar and hydrophilic surface (Moon et al., 

2011) and CNs are grafted with a few sulfate ester groups (-O-SO3H) due to the sulfuric acid 

hydrolysis process. These results, therefore, suggest that the anti-fog property induced on the 

PET and OPP substrates should be attributed to the electron-donor parameter of the polar 

component. For hydrophilic biopolymers, similar results were also reported (Introzzi et al., 

2012; Nuraje et al., 2010).  

 

3.8.5 Barrier properties.  

Table 10 OTR and WVTR  

Substrates (Thickness) Status OTR
a
 WVTR

b
 

PET (12 µm) 
Bare 97.0±4.2 52.0±0.3 

Coated 7.6±3.0 38.5±0.7 

OPP (20 µm) 
Bare 2500.0±12.5 8.7±0.0 

Coated 157.0±52.3 5.8±0.2 

OPA (12 µm) 
Bare 90.0±0.5 1136.0±5.7 

Coated 12.1±5.5 865.0±4.3 

Cellophane (12 µm) 
Bare 152±0.8 41.0 

Coated 4.4±0.0 41.0 

a
 cm

3
 m

-2
 day

-1
, test condition 23 °C 0% RH 

b
 g day

-1
 atm

-1
, test condition 38 °C 90% RH 

 

The Table 10 shows that the barrier properties of coated films improve significantly thanks to 

the thin (~600 nm) CNs coating. The oxygen transmission rates (OTR) of all samples have been 

measured and analyzed under the dry condition. PET and OPA are both relatively hydrophilic 

materials with already good oxygen barrier properties. After coating, their oxygen barrier is 

significantly improved, with a further reduction of about 90% in OTR value. The cellophane is 

regenerated from cellulose and could have similar hydrophilic properties. After CNs coating, 

oxygen resistance increases almost 40-fold and OTR of coated cellophane is reduced to 0.044 

cm
3
 m

-2
 24h

-1
 kPa

-1
. Coefficient oxygen permeability (KPO2) of CNs coating on cellophane is 

0.027 cm
3 

µm m
-2

 24h
-1

 kPa
-1

, which is similar with that of EVOH under dry conditions and 

smaller than that of PVDC (Lee et al., 2008). Such excellent oxygen barrier property of 

cellophane with CNs coating can be tentatively attributed to the strong hydrogen bonds among 

CNs and between CNs and cellophane. On the other hand, OPP is a definitely hydrophobic 

material with low oxygen barrier. CNs deposition on OPP dramatically reduces the oxygen 

permeability, which isolates ~94% oxygen compared to the bare OPP.  
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The water vapor transmission rate (WVTR) of CNs is limited by their hydrophilicity (Moon et 

al., 2011). Nevertheless, the WVTR of CNs-coated PET, OPP and OPA films is reduced by 26%, 

33%, and 24% respectively under 38 °C and 90% RH conditions, compared to bare films. It is 

obvious that CNs obtained from cotton linters are hydrophilic and could absorb certain amount 

of water vapor during the measurements, leading to reduction of WVTR, which were also 

reported in other literatures (Fukuzumi et al., 2012; Hult et al., 2010; Sanchez-Garcia et al., 

2010). On the other hand, bare and coated cellophane films have the same WVTR values 

because of both originate from cellulose.  

 

Thus, thin CNs coating improves the oxygen and water vapor barrier properties of conventional 

flexible food packaging. In another words, substitution of conventional plastics is difficult 

because of the cost, flexibility, availability and etc. But at least, CNs coated thin plastic films 

might be partially instead of the thicker ones, thereby, save the plastic and make our food 

packaging more friendly-environmental and sustainable. In this work, the OTR values were 

measured only under the dry condition and obtained relatively good performance. Since CNs is 

hydrophilic biopolymer, we suppose that the oxygen barrier will be reduced under high RH as 

other reports by the form of  coating or filler on to in other polymers (Fukuzumi et al., 2011; 

Kato et al., 2005). The CNs, however, has the highest crystalinity (~85-87%) compared with 

MFC, MFC/PEI LbL coatings (Aulin et al., 2009) and TEMPO-oxidized cellulose nanofibers 

(~74%) (Isogai et al., 2011), which might result in relatively better oxygen barrier under the 

high RH than other form nano-cellulose. This point should be still under the investigation and 

be proved by more evidence.  
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3.9 Conclusions 2 

In conclusion, we have systematically investigated the properties of conventional films coated 

with CNs. In particular, we have analyzed their optical properties (transparency and haze), 

mechanical properties (static and dynamic coefficient of friction), anti-fog (contact angle and 

surface energy) and barrier properties (oxygen and water vapor transmission rates). In doing 

this, we have demonstrated that CNs coatings mainly lead to a reduction of friction, a premium 

feature for industrial applications, and that their influence on the optical properties of the 

packaging is not significant. Excellent anti-fog property guarantees customers more convenient 

to evaluate the product easily. At last but not the least, CNs coatings dramatically not only 

improve the oxygen barrier properties of conventional flexible food packaging, but also leading 

to a certain reduction in the water vapor transmission rate. While substitution of conventional 

plastics might still be far ahead because of the low cost, large flexibility and availability, the 

perspective use of CNs as multi-functional coatings to favor a reduction of the required 

thickness for plastic films, towards a more environmentally-friendly and sustainable approach 

to packaging.  
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3.11 Topic/theme 3 Tunable Green Oxygen Barrier through Layer by Layer Self-assembly 

of Chitosan (CS) and Cellulose Nanocrystals (CNs) 

 

Introduction 

High gas-barrier materials are urgent and important need for food, drug packaging applications 

(Cooper et al., 2011; Priolo et al., 2010; Svagan et al., 2012). Particularly, the oxygen 

permeability of conventional plastic films is not able to meet assurance of the long shelf lives 

required for a wide variety of foods and expected by the market (Cooper et al., 2011). Facing a 

tough situation, we simultaneously cannot neglect environmental factors: the food should be 

effectively protected from oxygen by the films, whilst it is recommended that the barrier 

materials or coatings should be sustainable and environmentally friendly (Svagan et al., 2012). 

In other words, the conventional materials could not be completely and immediately substituted 

by bio-based ones. Thus, the high-barrier coatings are considered as a current key solution to 

significantly reduce the thickness of conventional materials, thereby, lead to make our present 

films more environmentally friendly.  

 

Up to now, the main strategies to increase the barrier properties of flexible and transparent 

materials for food packaging applications have been limited to vacuum metallization, silicon 

oxide (SiOx) coatings (Jang et al., 2008; Leterrier, 2003), manufacturing of multi-layers (by 

co-extrusion and/or laminating) (Affinito et al., 1996), or development of clay-nanocomposites 

(Chang et al., 2003; Donadi et al., 2011; Ghasemi et al., 2012). However, these solutions do not 

completely fulfill the sustainability expectations and the needs of transparency, while some 

technological drawbacks still exist. For instance, SiOx vapor-deposited thin films are prone to 

cracking when flexed and show poor adhesion to plastic substrates (Leterrier, 2003); multilayer 

materials can also present adhesion problems denoting delaminating occurrences; 

nanoclay-reinforced polymer composites and metallized films suffer from low transparency and 

relatively high values of the oxygen transmission rate (Osman et al., 2005; Sánchez-Valdes et 

al., 2006). Also, although the most claimed option to increase gas barrier properties of flexible 

packaging materials is currently represented by nanoclays inclusions (Jang et al., 2008; Priolo et 

al., 2010; Svagan et al., 2012), yet it was demonstrated that various nanoclays are highly 

cytotoxic, posing a possible risk to human health (Lordan et al., 2011). Ideally, a barrier coating 

made of natural bio-polymers could achieve all the goals of high transparency, low gas 

permeability, bio-compatibility, sustainability and good adhesion. Layer-by-layer (LbL) 

assembly is a basic technique for the fabrication of multicomponent films on solid supports by 

controlled adsorption from solutions or dispersions (Decher, 1997) and is also considered as a 

good candidate for versatile surface applications including gas barrier coatings (Jang et al., 

2008; Priolo et al., 2010; Svagan et al., 2012; Yang et al., 2011), anti-fog and super-hydrophobic 



PhD Dissertation of Fei LI  3 RESULTS AND DISCUSSION TOPIC 3 

72 

coatings (Nuraje et al., 2010; Zhai et al., 2004; Zhang & Sun, 2010), antimicrobial surfaces 

(Dvoracek et al., 2009; Etienne et al., 2005), drug delivery (Chung & Rubner, 2002; Kim et al., 

2008), and electrically conductive films (Daiko et al., 2008; Park et al., 2010). When a 

nanofiller needs to be integrated within a polymer matrix in order to provide it with specific 

novel functionalities, LbL techniques represent a means to avoid aggregation and thus achieve a 

high level of dispersion and a large filler load.  

 

Since cellulose nanocrystals and chitosan come from the first and second most abundant natural 

polymers on the earth (de Mesquita et al., 2010), their sustainability seems beyond doubt. Due 

to its nontoxicity, biodegradability, and anti-microbial properties, chitosan has been widely 

applied to food packaging and medical fields as a polycationic material (Ravi Kumar, 2000), 

whilst cellulose nanocrystals recently gained a great attention as optically-transparent 

reinforcement and barrier coatings (Eichhorn et al., 2010; Kontturi et al., 2007; Sanchez-Garcia 

et al., 2010) and were found to have neither genotoxicity nor effects on survival and growth of 

nine aquatic species in the ecotoxicological tests conducted so far (Kovacs et al., 2010). 

Furthermore, cellulose nanofibers were reported as effective gas barriers, also thanks to their 

high degree of crystallinity and strong hydrogen bonds: casted coatings based on 

TEMPO-oxidized cellulose nanofibers (TOCNs) reduced the oxygen permeability (PO2) of bare 

poly lactic acid (PLA) and PET films (Fukuzumi et al., 2008; Kato et al., 2005). Recently, 

well-controlled LbL assembly of CNs/CS multilayers has been proposed as a novel solution to 

improve the performance of CS coatings by exploiting the large electrostatic interaction and 

hydrogen bonds with CNs nanofillers (de Mesquita et al., 2010; Qi et al., 2012). At present, 

however, the barrier properties of such nanocomposites, as well as the influence of pH values 

on the assembly process, have not yet been fully investigated. 

 

The aim of our work refers to the development of a bio-nanocomposite coating, able to enhance 

the gas barrier properties of one of the currently most used synthetic plastics, maintaining its 

intrinsic transparency and reducing the environmental impact of the coated materials, lowering 

their final thickness. Our goal was also the full comprehension of the mechanism involved in 

the nanocomposite growth, in order to be able to modulate the final thickness and porosity, 

leading to a possible design of the barrier properties. 

  



PhD Dissertation of Fei LI  3 RESULTS AND DISCUSSION TOPIC 3 

73 

3.12 Materials and methods 3 

3.12.1 Materials 

Shellfish chitosan (CS, GiustoFaravelli SpA, Milan, Italy) had a degree of deacetylation of 85% 

and a molecular weight ranging from 50 000 to 60 000 (data provided by the supplier). Cotton 

linter board, provided by SSCCP (Italian pulp and paper research institute, Milan, Italy), was 

used for producing cellulose nanocrystals. Amorphous poly(ethylene terephthalate) (A-PET, 

~180 μm thick) was used as the plastic substrate for layer-by-layer coating, provided from ILPA 

srl (Bazzano, Italy). Other reagents were purchased from Sigma-Aldrich, Italy.  

 

3.12.2 Preparation of biopolymer dispersions for layer-by-layer coating 

1 wt % chitosan water dispersion was prepared by dissolving the polysaccharide in 0.1 M 

HCl(aq) at 25 °C for 3 h under stirring. After adjusting pH and filtration, the chitosan dispersion 

was used for the layer-by-layer coating.  

 

1wt % cellulose nanocrystals (CNs) water dispersion was prepared from cotton linter using a 

procedure already established for cotton from powdered filter paper (Dong et al., 1996). Briefly, 

milled cotton linter was hydrolyzed by 64% (wt/wt) sulfuric acid with vigorous stirring at 45 °C 

for 45 min. The reaction mixture was diluted with 10 times-volume deionized water (18.2 MΩ 

cm, Millipore Milli-Q Purification System) and settled for 2 h, and then was rinsed and 

centrifuged at 5000 rpm repeatedly until the supernatant became turbid. Further purification 

was then done by dialysis against deionized water until the effluent remained at neutral pH 

(Molecular Weight Cut Off 12 000 and higher). Sequentially, the suspension was sonicated 

(UP400S 400 W, Hielscher Co., Germany) repeatedly (5 cycles of 10 min at 70% output) to 

create cellulose crystals of colloidal dimensions. Finally, the suspension was filtered under 

vacuum with Muktell (grade GF/C, 1.2 μm) and Whatman glass microfiber filter (grade GF/F, 

0.7 μm) to remove contamination and big aggregations. The CNs content of the resulting 

aqueous suspension was determined by drying several samples (1 ml) at 105 °C for 15 min 

intervals (to avoid decomposition or burning) until weight constancy, giving a cellulose 

concentration of ~1 % wt/wt and a yield of ~50%. 

 

3.12.3 Surface charge density measurements 

Surface charge densities were measured by means of conductometric titration. For the CNs 

dispersion, a commercial particle charge detector was used (PCD-04, Müteck, Germany), while 

for the CS dispersion, the same procedure described by Farris et al. (Farris et al., 2012) was 

employed.  
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3.12.4 Layer-by-Layer assembly  

Glass slides and silicon wafers were used as the substrates for AFM and ellipsometry thickness 

evaluation, respectively. Firstly, the glass slides or silicon wafer were rinsed and pre-treated into 

the Piranha solution (96% H2SO4 : 30% H2O2= 3:1 (v:v)) to remove the contaminations and 

generate the negative charge on the surface of glass slides [Caution! Cleaning solution reacts 

violently with organic materials and should be handled with extreme caution]. The coating 

procedure is as follows: (1) The glass slide or silicon wafer was dipped into the chitosan 

dispersion for 5 min (for the first bilayer) and 3 min (for other bilayers); (2) The substrates were 

rinsed in distilled water for 3 min for removing the excess chitosan; (3) The CS coated surfaces 

were dried by filtered compressed air and dipped into the CNs dispersion for certain time (5 min 

for the first bilayer and 3 min for other bilayers); (4) The rinsing and drying steps were the same 

as the one for chitosan. Finally, the different numbers of bilayers were achieved by the recycle 

of (1)-(4) steps. For the coating on flexible plastic, A-PET films were rinsed with distilled water, 

methanol, and again distilled water for removing the lipids and other contaminants, dried by 

filtered air, and submitted to corona treatment (BD-20 high frequency generator, Electro-technic 

products, Inc., Chicago, IL, USA) to increase the surface energy and generate a negative-charge 

surface. Sequentially, the coating procedure is the same as the one on glass slides and silicon 

wafer. All of the samples were stored into desiccators at 0% RH ready for following 

measurements. The pH of CS or CNs dispersions is presented next to their name in the figures 

and text. For example, one bilayer of CS (pH = 4)/CNs (pH = 2) is abbreviated as 

(CSpH4/CNspH2)1.  

 

3.12.5 Transparency measurements 

The transmittance of the sample was measured at a wavelength of 550 nm, according to the 

ASTM D 1746-70, by means of a Perkin-Elmer L650 spectro-photometer. 

 

3.12.6 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra were recorded using a Perkin Elmer instrument (Sprectrum 100) equipped with an 

ATR. Spectra were recorded using a spectral width ranging from 650 to 4000 cm
-1

, with 4 cm
-1

 

resolution and an accumulation of 16 scans.  

 

3.12.7 XPS (X-ray photoelectron spectroscopy)  

XPS scans were acquired with a Phoibos 150 hemispherical analyzer at normal emission. X-ray 

excitation was provided by a twin anode X-ray source operated at 200 W. Mg Kα radiation 

(photon energy: 1253.6 eV) was used. The wide scans were acquired with a pass energy of 50 

eV, while detailed scans were acquired with a pass energy of 25 eV. 
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3.12.8 Atomic Force Microscopy 

An atomic force microscope (AFM, AlphaSNOM, WITec GmbH, Germany) was employed 

both to systematically study the thickness of the deposited multilayers and to analyze their 

morphology. For thickness measurements, the LbL coating on glass slides was gently scratched 

in order to expose part of the glass substrate and thus measure the thickness of the coating. 

Topography images were acquired with soft tapping mode at low oscillation amplitudes, 

stabilized by an amplitude-modulation feedback system based on the optical lever deflection 

method. Standard AFM Si probes have been used. 

 

3.12.9 Ellipsometry 

The thickness of each layer from 0 to 8 bilayers was also determined by a variable angle 

spectroscopic ellipsometer (VASE
®
 J.A. Woollam Co. Inc., USA) with a wide spectral range 

capability of 200-1700 nm. In order to provide the system with a standard reference substrate, 

CS/CNs multilayers were here deposited on a Si wafer. Data were collected at different angles 

of incidence (60°, 65° and 70°), between 400 and 800 nm. The ellipsometric amplitude ratio, Ψ, 

and the phase difference, Δ, data were fitted using a Cauchy model for the refractive index of 

the deposited material, with its given uncertainty based on data reported in the literature 

(Angles & Dufresne, 2000; Frank et al., 1996; Kasarova et al., 2007; Ligler et al., 2001; Sei-ichi 

et al., 2001).  

 

In order to increase the fitting accuracy, the Bruggeman model of the effective medium 

approximation (EMA) layer was employed (Hoeger et al., 2011). This approximation allowed 

for film thickness analysis by incorporating air as an integral part of the ultrathin film. The 

positive free parameters of the fitting were the thickness of the deposited layers and their 

percentage P of air-filled voids. The fitting of the experimental data was performed by 

minimizing the mean-squared-error defined as 
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where N is the number of measured  and  pairs and M is the total number of model fit 

parameters.  

 

Since the layer thickness and the material refractive index are expected to be correlated in the 

fitting procedure, the reported thickness values were found within some uncertainty, which 

reflects the uncertainty in the material refractive index. However, this uncertainty was found to 

be lower than 1%, with the exception of thicknesses below about 20 nm (with uncertainty of the 
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order of few %).  

 

3.12.10 Field-Emission Scanning Electron Microscopy 

SEM observation of the film cross-sections was carried out with a Zeiss Σigma field-emission 

microscope at 5 kV. The samples subjected to the SEM observation were pre-coated with gold 

using a Polaron E5100 Coater at 18 mA for 20 s. 

 

3.12.11 Oxygen barrier properties 

Oxygen permeability measurements of coated A-PET films were performed by OX-TRAN
®
 

Model 702 (MOCON, USA), complying with ASTM-3985, under the condition of 23°C and 0% 

relative humidity (RH). The samples, with a surface of 50 cm
2
, were measured at atmospheric 

pressure. Each sample was conditioned in the chamber for 24 h, and the oxygen transmission 

rate (OTR) was measured over 1-2 days until it reached a stable value. The PO2 of the CS/CNs 

nanocomposite coating in the coated film [i.e., PO2 (Coating)] was calculated using the 

following equation (Lee et al., 2008): 

1

PO2(coated A − PET)
=  

1

PO2(coating)
+  

1

PO2(A − PET)
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3.13 Results and discussion 3 

3.13.1 Layer-by-layer assembly 

We first investigated the layer-by-layer self-assembled growth of the CS/CNs nanocomposite. 

The growth process and the resulting multilayer structure created by polycationic 1 wt % CS 

and polyanionic 1 wt % CNs are sketched in Figure 24(a) and 1(b). Scheme Figure 24(a) 

presents one cycle of layer-by-layer assembly and the numbers of cycles are directly related 

with the thickness of coating and indirectly correlated to the properties of coated substrates. 

Figure 24(b) clearly exhibits the CS and CNs layers deposited on substrate. The different layers, 

however, are not exactly independent and they overlap and attract each other tightly due to the 

low thickness of each layer and hydrogen bonds and electrostatic interactions between CS and 

CNs. Also, the thickness of CS is lower than CNs by reason of the big differences of charge 

density of two polymers. The proportion of CS and CNs-layer thickness in Figure 24(b) does 

not show the actual situation, just for illustration. In the next section (3.2), we will discuss the 

interaction between the two polymers at length.  

 

 

Figure 24 (a) Illustrations of the LbL self-assembly process and (b) the nanostructure 

constructed by the alternate adsorption of CS (orange) and CNs (gray) onto a substrate. 
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Figure 25 Scanning electron microscopy images of the multilayer cross section and morphology, 

after cutting it with blade and coating it with a few nm Au layer. The average thickness of the 

multilayer is about 800 nm. 

 

Hereafter, we will refer to a single CS/CNs assembly as one bilayer. A cross section of the 

multilayer film, obtained after 30 deposition cycles on an amorphous-polyethylene terephthalate 

(A-PET) substrate, is presented in Figure 25(a). Multiple-layer structures are clearly observed, 

confirming that nano-scale layers were established by the LbL assembly. The total thickness of 

the 30 bilayers CS/CNs coating can be estimated to be ~ 800 nm on average from FE-SEM 

figure (T1 and T2). Owing to the warming phenomena of SEM, the cross section was blend and 

occasionally not only the cross section of LbL coating but also the planes of inside layers are 

vividly shown, which ascertain again the overlapped multiple layers. Morphology of 30-bilayer 

sample is presented in Figure 25(b). Although the Au particles partially cover the real 

morphology, we still could see CNs network with each other. There are pores on the surface, 

whereas most of them are closed or blocked by the nether layer, which was also reported in 

other papers (Siró & Plackett, 2010).  

 

We also measured the optical transparency of the same film at 550 nm, obtaining a 

transmittance of about 70% (representing a reduction of approximately 13% compared to the 

bare A-PET substrate). Figure 26 presents high transparency of CS/CNs nanocomposite coating. 

The boarder of coated and uncoated part is marked by red in Figure 26, from which we could 

not significantly distinguish the transparency differences by eye inspection. 
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Figure 26 Optical property of coated A-PET. 

 

3.13.2 Structure of CS/CNs nanocomposite 

(1) FTIR  
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Figure 27 FTIR of pure CNs (I), 30-bilayer CS/CNs nanocomposite (II), and pure chitosan (III). 

(a) FTIR spectrum from 650 to 4000 cm
-1

. (b) Close-up of the spectrum showing the 

displacement of the N-H bending in the nanocomposite from 1515 to 1535 cm
-1

. 

. 

Figure 27 shows the FTIR spectra of cellulose nanocrystals, chitosan, and 30-bilayer CS/CNs 

nanocomposite. The main bands that appear in the spectrum of chitosan are located around 1621 

and 1515 cm
-1

 which is shifted to 1535 cm
-1

 in CS/CNs nanocomposite due to the proportion of 

amide and amine groups by pH conditions. The first one corresponds to the C=O stretching of 

acetyl groups and the second one arises from N-H bending vibrations (amide and amine groups). 

The bands at 1070 and 1030 cm
-1

 are attributed to the C-O stretching vibrations, whereas the 

broadband at 3200-3450 is assigned to the O-H and N-H stretching. The peaks at 1375 and 

1450 cm
-1

 are due to the -CH3 groups of N-acetylglucosamine residue and -CH2 groups, 

respectively (de Mesquita et al., 2010; Li et al., 2009). In pure CNs, the band at 3338 cm
-1

 is 

attributed to the O-H stretching vibration. The bands at 2902 and 1429 cm
-1

 are characteristic of 

C-H stretching and bending of -CH2 groups, respectively, whereas the peaks at 1162 and 1060 

cm
-1

 are attributed to the saccharide structure (Li et al., 2009). The sulfate groups were not 

detected in that the amount of these groups was very small, whereas it was determined by XPS 

in Table 11. The spectrum of the CS/CNs nanocomposite shows characteristic bands of both 

materials. The saccharide and the C-H stretching bands could be observed in the spectrum of 

the nanocomposite film as well as the bands related to C=O stretching and N-H bending. The 

broadband around 3200-3450 cm
-1

 in the nanocomposite moved slightly and became broader 

1800 1700 1600 1500 1400

(b)

1535

 

T
ra

n
s
m

it
ta

n
c
e
 %

Wavenumber / cm
-1

1515

  

(I)

(II)

(III)



PhD Dissertation of Fei LI  3 RESULTS AND DISCUSSION TOPIC 3 

81 

compared to the spectrum obtained for pure CNs. Zhang et al. (Li et al., 2009) stated that these 

effects result from the interaction between the negatively charged sulfate ester groups on the 

CNs surface and the positive charged ammonium groups of chitosan. Besides these interactions, 

the formation of hydrogen bonds between CNs and chitosan is highly expected given the 

chemical structure of these polysaccharides.  

 

(2) XPS  

Table 11 Concentration of atomic species (in terms of number of atoms) for the CS/CNs 

nanocomposite, CNs, and CS samples 

 O [%] C [%] N [%] S [%] Cl [%] Na [%] F [%] 

CS/CNs 28.7±0.2 68.7±0.6 2.2±0.2 0.3±0.1    

CNs 39.1±0.2 59.4±0.4 - 0.6±0.1 ~0 ~0 0.8±0.1 

CS 20.3±0.3 43.6±0.8 5.2±0.3  15.5±0.2 14.8±0.5 0.6±0.1 

 

Table 11 did show peaks related to oxygen, carbon, nitrogen and a faint signal from sulfur for 

CS/CNs nanocomposite sample, additional peaks related to fluorine and not a nitrogen peak for 

CNs sample, and peaks related to oxygen, carbon, nitrogen, chlorine, fluorine and sodium for 

CS sample.  

 

Fluorine, sodium and chlorine did not come from improper handling of the samples during XPS 

analysis but were already present in the films, which were likely originated from the impurity of 

reagents.  

 

The nitrogen signal allows us to distinguish between two different situations:  

(N1) nitrogen atoms bonded to one carbon atom (N–C bonds) or in non-protonated amine 

groups; (N2) oxidized or protonated nitrogen atoms. The amount of N1 and N2 contributions in 

the two samples containing CS is in the following Table 12:  

 

Table 12 Nitrogen signal features related to different bonds for the CS/CNs nanocomposite and 

CS samples 

 N1 [%] N2 [%] 

CS/CNs
a
 68±5 32±4 

CS 47±5 53±6 

a
 CS/CNs, CS/CNs nanocomposite  

 

However, these numbers should be considered only as qualitative information, since we have 

evidence that after long exposure to X-ray, part of the protonated nitrogen (N2) is converted into 
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non-protonated (N1) in Appendix 1 (Chitosan XPS plots comparison between the 30 and 60 

min). Interestingly, this change upon irradiation was seen only in CS sample and not in CS/CNs 

sample (multilayer).  

 

The relative amount of protonated amine groups in the CS/CNs sample is much lower than in 

the CS reference sample. A possible explanation should be as follows: due to the reduced 

thickness of the chitosan layer, the process of de-protonation by X-ray is much faster in CS/CNs 

than in CS sample. On the other side, the percentage of protonated nitrogen groups is much 

more stable in CS/CNs sample, maybe because linked to the underlying cellulose layer. 

Considering the CS sample, the oxygen to nitrogen ratio is 4, in perfect agreement with the 

expectations from the chitosan molecular structure.  

 

Figure 28 Nitrogen peaks of XPS 

 

The peaks in Figure 28 were decomposed into a sum of Gaussian/Lorentzian lineshapes with 

the same FWHM. The lineshape used to model the nitrogen peaks is a weighted product of a 
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Gaussian (70 %) and a Lorentzian (30 %) lineshape. The peak at the lowest (absolute) binding 

energy, peak N1, is associated to photoemission form N 1s orbitals in nitrogen atoms bonded to 

one carbon atom (N-C bonds) or in non-protonated amine groups (Matienzo & Winnacker, 

2002), while peak N2 is associated to oxidized or protonated nitrogen atoms (Dambies et al., 

2000; Matienzo & Winnacker, 2002). The binding energy of N1electrons is -399.8±0.1 eV, in 

good agreement with the value reported in the literature (-400.0 eV) (Matienzo & Winnacker, 

2002). The chemical shift between peak N2 and peak N1 is ΔE12=2.2 ±0.2 eV, in good 

agreement with the literature (ΔE12=2.1±0.3 eV) (Da Róz et al., 2010).  

 

3.13.3 Thickness of CS/CNs nanocomposite coating  

Figure 29(a) and (b) show the thickness, obtained by atomic force microscopy (AFM) and 

ellipsometry, respectively, for films constituted of an increasing number of bilayers and 

deposited under two different pH conditions (CSpH2/CNspH6) and (CSpH4/CNspH2). CSpH4/CNspH2 

combination is one of best compromises between the transparency and oxygen barrier, while the 

pH 4 CS and pH 2 CNs are close to the original pH of two polymers which dissolve in 1 M HCl 

and water. We chose these two combinations in order to better interpret another method for 

changing the coating thickness, thereby, manipulating the oxygen barrier properties. The two 

individual thickness measurements provide accordant results on each measured sample. Notice 

that the thickness increase is proportional to the nominal number of deposited bilayers, clearly 

indicating a stable and replicable growth process. Under the (CSpH2/CNspH6) deposition 

conditions, an average thickness of ~7 nm per bilayer was gained and as shown in Figure 29(a) 

and 2(b) (empty circles), consistent with previous values reported in the literature for a similar 

pH combination (de Mesquita et al., 2010). Remarkably, the pH conditions of the employed 

solutions can be suitably controlled as a means to tune the thickness of the individual layers. 

Indeed, under the (CSpH4/CNspH2) conditions, we observe a huge change in the thickness of the 

individual bilayers, which increases more than 3 times, from ~7 up to ~26 nm (solid squares). 

The principle behind the significant thickness differences will be interpreted in the following 

paragraph.  
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Figure 29 (a) Thickness, obtained from AFM, as a function of the number of CS/CNs bilayers 

(n) deposited on a glass substrate at two different combinations of pH values: (CSpH4/CNspH2)n 

(■) (dashed line: linear fitting with adjusted R
2
=0.996) and (CSpH2/CNspH6)n (○) (R

2
=0.999). (b) 

Thickness, obtained by ellipsometry, as a function of the number of bilayers (n) deposited on 

silicon wafer for the same conditions as in panel (a). Non integer values of n represent 

deposition of CS layers, while integer values are related to CNs deposition.  

 

In order to further investigate the role of charges on the growth process, we measured surface 

charge density of two polymers by means of conductometric titration at neutral conditions. 

From such measurements, the amounts of cationic and anionic groups are determined to be 

about 4600 mmol kg
-1

 of CS and 220 mmol kg
-1

 for CNs, respectively, in a good agreement 

with other report (de Mesquita et al., 2010). In other words, the ratio of –NH3
+
 (from CS) to –

O–SO3
-
 (from CNs hydrolyzed by H2SO4) is about 21. A highly different surface charge density 

leads to large differences in the CS and CNs-layer thickness, as confirmed by Figure 29(b). 

Combining the evidence of surface charge density with the thickness values obtained for each 

individual layer by ellipsometry, we conclude that electrostatic interactions are the main driving 

force in the LbL assembling of CS and CNs and in establishing their thickness. On the other 

hand, the overcompensation has also to be taken into account as a crucial factor in determining 

the thickness (Yang et al., 2011), especially under the CSpH4/CNspH2 conditions. In this case, 

surface charges on the CNs layer (pH 2) are particularly sensitive to local pH (CS pH 4), thus 

when top CNs layer was dipped into CS solution, the pH of the CS solution makes cellulose 

segments more charged, which are able to attract more CS molecules than usual. A similar 

process occurs for the complementary situation as well, when the CS layer (pH 4) is dipped into 

the CNs solution (pH 2), the pH of CNs makes the CS chains become more charged and attract 

more CNs. Regarding the original charge density of CS is much higher one of CNs, thus under 

the local pH effect, a larger number of charged groups induces overcompensation, thereby 

significantly changing the thickness of deposition.  
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In CSpH2/CNspH6 system, when the pH value of chitosan is 2, the amino groups on the chitosan 

chains are more protonated than pH 6. The more protonated amino groups (at pH 2) mean that 

the chitosan chains are more charged and the repulsions between the chains are stronger, 

thereby the chains become more rigid, than the ones at pH 6. For CNs, when the pH value is 

approaching 7 (pH 6), the CNs chains are more charged and rigid than the ones at pH 2. The 

rigid chains of both chitosan and CNs result in the higher porosity of the films. Meanwhile, if 

the samples whose top layer is chitosan is dipped into CNs pH 6 solution, the local pH 6 could 

significantly decrease the charge density of chitosan, which brings on attracting much less CNs, 

thereby the lower film thickness, vice versa (dipping CNs pH 6 into pH 2 chitosan solution).  

 

Hence, adjusting the pH of two polyelectrolytes solutions or dispersions can tune both the 

individual thicknesses and the relative proportion of the two biopolymers, thereby influencing 

the oxygen permeability of LbL coating (Lee et al., 2008; Svagan et al., 2012; Yang et al., 2011). 

In CSpH4/CNspH2 system, the local pH has more influence on the thickness of CNs due to its 

much lower charge density. Control over the pH conditions seems, therefore, an easy way to 

achieve ideal properties (ex. lower permeability) while keeping the number of deposition steps 

reasonably low.  

 

Figure 30 Oxygen permeability (PO2, cm
3
 m

-2
 24h

-1
 kPa

-1
) for a 180 µm A-PET substrate coated 

with increasing numbers of (CSpH4/CNspH2)n bilayers (n = 0, 5, 10, 15, 20, 25, and 30). Inset, 

reciprocal value of the oxygen permeability coefficient (KPO2) (cm
-3

 µm
-1

 m
2
 24h kPa) of the 

bio-nanocomposite coating only. All of the measurements were performed under ‗dry condition‘ 

(namely, 23 °C and 0% RH). For each number of bilayers, two independent samples were 

prepared and tested, with typical deviation between the two measurements around 20%.  
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3.13.4 Oxygen permeability of CS/CNs nanocomposite coating 

The oxygen permeability of the CS/CNs coating only and those of the coated A-PET are 

presented in Figure 30 for the (CSpH4/CNspH2) condition, according to the number of bilayers (n) 

which vary from 0 to 30. Following the thickness increase of LbL coating, the oxygen 

permeability (PO2) value of coated A-PET is decreasing dramatically. At 30 bilayers, the PO2 

value of coated A-PET reduces by ~94%, compared to uncoated A-PET, from about 0.2 down to 

about 0.013 cm
3
 m

-2
 24h

-1
 kPa

-1
, as a result of the strong electrostatic interaction and hydrogen 

bonding between CS and CNs. In order to have the same oxygen permeability, a bare PET 

should be about 2.7 mm thick. In the inset of Figure 30, the reciprocal value of the oxygen 

permeability coefficient KPO2 is also reported to highlight the oxygen resistance of the LbL 

coating only (after subtraction of the PET contribution). It is a remarkable evidence that from 

10 to 30 bilayers, i.e. from 260 to 780 nm (thickness of one-side coatings on A-PET), this index 

remains quite stable, hence KPO2 is approximately constant. We can thus assume that at the 

testing temperature neither the oxygen diffusion coefficient, nor the oxygen solubility changes 

in the CS/CNs nanocomposite, which therefore acts as a homogeneous material, independently 

of the thickness and the number n of bilayers (for 𝑛 ≳ 10).(Lee et al., 2008) This is a relevant 

assessment in order to design LbL self-assembly nanoscale coatings with a specific oxygen 

permeability and optimized thickness. The most significant decrease of PO2 value is observed 

from 5 to 10 bilayers, denoting a likely inhomogeneous structure of the LbL coating for the first 

5 bilayers: some pores or extremely thin parts might exist, resulting in easier oxygen 

penetration. In order to test this hypothesis, we studied the sample topography over (100×100) 

µm
2
 areas by AFM. Figure 31 shows the topography for the bare A-PET substrate (a) and for 

the coated substrate with 5 (b), 10 (c), 20 (d), and 30 (e) bilayers. Scratches on the bare A-PET 

surface are likely caused by the friction between films during the handling, but most parts of the 

PET are smooth. Noticeably, the overall height excursion of the 5 bilayers topography is 

comparable with the average thickness of the film, denoting a non-uniform coverage of the 

substrate by the coating, as can also be clearly seen by simple eye inspection of Figure 31b). 

For the 10-bilayer coating, on the contrary, a fully covered surface, with many small CS/CNs 

aggregates, is apparent from the AFM image, in qualitative agreement with the results of the 

oxygen permeability measurements. For the 20- and 30-bilayer samples deposited under the 

same conditions, the surface topography is qualitatively similar to the one observed for the 

10-bilayer film.  
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Figure 31 AFM topography images and section lines of a bare A-PET substrate (a), and the 

same substrate coated with 5 (b), 10 (c), 20 (d), and 30 (e) CS/CNs bilayers. Note the different 

height scale bars.  
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The results shown in Figure 32 are also in agreement with the fitting results of the ellipsometry 

data. Indeed, in order to increase the fitting accuracy, the Bruggeman model of the effective 

medium approximation was employed (Hoeger et al., 2011). This allowed for the film thickness 

analysis (see Figure 29) by incorporating air as an integral part of the ultrathin film. For the 

(CSpH4/CNspH2) sample, in particular, we found that the percentage of air voids reduces from 

30-40% for the first two bilayers to less than 6% after the fifth bilayer (see Figure 32), denoting 

an increasing filling of the CS/CNs nanocomposite with increasing thickness. This finding is in 

good agreement with the oxygen permeability results for the (CSpH4/CNspH2) sample, which 

reveal the establishment of good barrier properties only after more than 5 deposited bilayers. 

Interestingly, similar phenomena have recently been postulated as the reason for the absence of 

oxygen-barrier properties in a multi-functional LbL coating produced by TEMPO-oxidized 

cellulose nanofibers and nano-chitin (Qi et al., 2012), where 10 bilayers were deposited with an 

overall thickness (~100 nm) very similar to our 5 bilayers coating. By our analysis, we are, 

therefore, able to interpret such occurrence by quantifying the pore density by means of 

ellipsometry measurements. The high porosity of CSpH2/CNspH6 sample is due to the higher 

rigidity of molecular chains resulting from pH values. According to the ellipsometry results, 

after 8 deposited bilayers the (CSpH2/CNspH6) coating was still characterized by more than 15% 

air voids, which discloses that more LbL cycles are needed to obtain a homogenous 

nano-coating compared to the (CSpH4/CNspH2) conditions.  

 

 

Figure 32 The air void percentage P as a function of the number of bilayers (n), as obtained 

from the fitting procedure of the ellipsometry data. 
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In this work, the OTR values were measured only under the dry condition and obtained 

relatively good performance. Since CS and CNs are both hydrophilic biopolymers, the oxygen 

barrier will be certainly reduced under high RH. This limitation is common to the currently used 

synthetic barrier polymers (polyamide (PA), polyvinyl alcohol (PVOH), ethylene vinyl alcohol 

(EVOH)) and led to the development of multilayer structures, designed in order to protect 

moisture sensitive polymers with polyolefin such as low-density polyethylene (LDPE), 

high-density polyethylene (HDPE), and polypropylene (PP). 
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3.14 Conclusions 3 

We demonstrated the use of CS/CNs nanocomposites realized by LbL self-assembly as oxygen 

barrier under different pH combinations, which has not been systematically reported so far to 

the best of our knowledge. The oxygen permeability coefficient of CS/CNs nanocomposites is 

as low as 0.02 cm
3
 µm m

-2
 24h

-1
 kPa

-1
, close to EVOH co-polymers, under dry conditions (Lee 

et al., 2008). Although the oxygen barrier property of the CS/CNs bio-nanocomposite is still not 

as outstanding as that of some LbL coatings including inorganic nanoclays (Svagan et al., 2012; 

Yang et al., 2011), we consider the absence of any potential risks for human beings and the 

renewable origin of the carbohydrate polymers as significant added values that justify a deeper 

investigation and exploitation of the LbL process applied to CS/CNs (Kovacs et al., 2010; 

Lordan et al., 2011). Moreover, the production processes for chitosan and cellulose nanocrystals 

are both low-energy consuming, especially compared to microfibrillated cellulose (MFC) 

produced by mechanical processes (Isogai et al., 2011) and the inexpensive use of cotton linters 

might lead to further promising practical applications. Finally, it deserves to be underlined also 

the chance of finely tuning the oxygen permeability by means of the pH values and the sharp 

control of the thickness associated with this process. Therefore, based on the advantages 

outlined above, the LbL CS/CNs nanocomposite represents a promising oxygen barrier 

component in transparent flexible packaging materials and semi rigid tridimensional objects 

(bottles, trays, boxes and etc.).  
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Gas and water vapor permeability coefficient summary  
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Chitosan XPS plots comparison between the 30 and 60 min 

 

 

Figure A-1 Chitosan XPS plots comparison between the 30 and 60 min 

 

Table A-2 All analyzed peaks at the two exposures time (30 and 60 min) 

Atoms C 1s [%] O 1s [%] N 1s [%] 

Ex. time Conc. C1 C2 C3 C4 Conc. O1 O2 O3 Conc. N1 N2 

30 min 64±3 10±1 74±2 12±1 3.5±0.5 28.3±0.4 9.7±0.5 88±2 2.6±0.4 7±1 47±6 53±6 

60 min 67±3 11±1 72±3 13±1 3.5±0.5 27.7±0.4 9.5±0.7 88±3 2±1 7±1 53±4 47±3.5 

 

The column ‗concentration‘ refers to the atomic concentration of the selected element, 

calculated on the basis of the detailed scans and with the same relative sensitivity factors of 

those used in Table A-2. The results are normalized only to the signal from oxygen, carbon and 

nitrogen, and the agreement with the results of Table 11 is good, once the signal from 

contaminants is discounted. There are no variations in the carbon and oxygen peaks, and also 

the concentration of nitrogen in the sample does not change with the increase of X-ray exposure. 

Parts of the protonated or oxidized nitrogen are converted into not protonated, or not oxidized 
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form.  
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APPENDIX 2 

 

Copies of Extended abstract of papers 

Publications  

1. Journal: Electroanalysis  

Title: Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes as Coating for 

Electrochemical Sensors for Sulfhydryl Compounds Abstract: A new method to modify 

electrodes with carbon nanotubes (CNT) was developed. Multiwalled carbon nanotubes 

(MWNT) were adsorbed on the electrospun nylon-6 nanofibrous membranes (Ny-6-NFM) and 

used as a coating to modify conventional glassy carbon electrodes. The modified electrode was 

designed for the amperometric detection of sulfhydryl compounds with the potential held at+0.3 

V vs. Ag/AgCl. The modified electrode showed a linear response for cysteine up to 0.4 mM 

(R
2
=0.997), with a sensitivity of 5.1mA/mM and a detection limit of 15mM. Other sulfhydryl 

compounds showed similar results. After use, the Ny-6-NFM was easily peeled off, leaving the 

bare electrode surface back to its original electrochemical behavior. This is the first attempt to 

use a disposable membrane functionalized with MWNT for electroanalytical purposes.  
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2. Carbohydrate Polymers  

Title: Tunable Green Oxygen Barrier through Layer by Layer Self-assembly of Chitosan and 

Cellulose Nanocrystals 

Abstract: We address the oxygen-barrier properties of a nanocomposite created by layer-by 

layer assembly of two biopolymers, chitosan (CS) and cellulose, in nanocrystals form (CNs), on 

an amorphous PET substrate. We systematically investigated the oxygen permeability, 

morphology, and thickness of the nanocomposite grown under two different pH combinations 

and with different number of deposition cycles, up to 30 bilayers. Noticeably, the thickness of 

each deposited bilayer can be largely tuned by the pH value of the solution, from ~7 up to ~26 

nm in the tested conditions. By our analysis, it is reliably concluded that such CS/CNs 

nanocomposite holds promises for gas barrier applications in food and drug packaging as a clear 

coating on plastic films and tridimensional objects, improving performance and sustainability of 

the final packages.  
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Posters  

1. SLIM 2010 in Zaragoza, Spain (2010) 

Title: Moisture effects on water vapor permeability measurements of Polylactide films 

Abstract: The moisture barrier properties of polylactide was investigated. The first part of the 

study focused on the mosisture sorption of PLA films. The results showed that it was not linear 

between the relative humidity (from 10% to 80%) and moisture sorption. The second part of the 

study investigated the influences of relative humidity on the water vapour transmission rate 

(WVTR) under the condition of 38 °C by two methods. One was by PLA bags with calthuim 

chloride, another one was using the permeability equipment. According to the results, the 

WVTR values were linear with relative humidity from 10% to 80% with very high correlation 

coefficient. Therefore, it concluded that the moisture sorption did not have effect on the WVTR 

under the different relative humidity.  
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2. PhD workshop in Napoli, Italy (2010) 

Title: Development of nano-material for food packaging  

Abstract: Over the past decades, polymers have replaced conventional materials in packaging 

applications due to their functionality, lightweight, ease of processing, and low cost. However, 

despite their huge versatility, a limiting property of these polymers is their inherent permeability 

to gases and vapors. This has boosted interest in developing new strategies to enhance the 

general performance and to carry out research aimed to understand the ‗structure-properties‘ 

relationships. The most frequently used strategies to enhance the properties of synthetic 

polymers are the use of polymer blends, high barrier coatings, and the use of multilayered films. 

Polymers can also be added with suitable fillers to form composites with enhanced barrier 

properties. Fibers, platelets and particles have been used to form polymer composites with 

enhanced mechanical, barrier and thermal properties. Environmental concerns and the need for 

a sustainable development led to a growing attention towards bio-based materials also in the 

packaging sector. Hence, the general goal of the project is to achieve better performance of food 

packaging materials using bio-based nano-materials, mainly obtained from cellulose.  
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3. PhD workshop in Lodi, Italy (2011)  

Title: Development of nano-material for food packaging  

Abstract: The first two activities of the PhD thesis project are described. Firstly, the process of 

producing cellulose nanocrystals was set up and the morphology of cellulose nanocrystals such 

as a coating onto a plastic film, were observed by transmission electronic microscopy (TEM) 

and field-emission scanning electronic microscopy (FE-SEM). Secondly, the coating conditions 

and properties of cellulose nanocrystals were investigated and optimized by means of an 

auto-applicator coating device and different techniques of characterization.  
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4. MATBIM in Dijon, France (2012)  

Titile: Cellulose nanocrystals coating to improve the properties of flexible films for food 

packaging applications  

Abstract: The use of synthetic polymers is common in food packaging applications because 

they are able to provide mechanical, chemical, and microbial food protection from the 

environment and good products display. However, despite their enormous versatility, it is not 

always easy to match the overall needs of a product with the specific properties of the flexible 

packaging materials available. In the recent years, in particular, the expectations for more 

sustainable packaging raised significantly. The strategies most frequently used to achieve the 

required properties for a final flexible packaging material are the application of synthetic 

coatings, the use of multilayered films, or the blending of polymers with suitable fillers or 

additives. In this context, the use of nanocomposites or nanostructured materials, promises a 

new crop of stronger, more heat resistant, and high barrier materials. Among the various 

nanostructures recently developed for practical applications like hybrid organic-inorganic 

systems, cellulose nanocrystals (CNs) are promising solutions used in combination with 

different polymers due to their unique characteristics such as broad availability, low cost, 

biodegradability, high stiffness and low density. Therefore, the general goal of our work is to 

use cellulose nanocrystals as coating of common plastic films to modulate and improve their 

original properties by means of a real sustainable approach.  
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5. SLIM 2012 in Changwon, Korea (2012)  

Title: Green oxygen barrier of self-assembled bionanocomposites  

Abstract: Layer-by-layer (LbL) assembly is commonly used in different research, especially for 

nano-scale multiple layers on different substrates applied into various fields. Generally speaking, 

the steps of LbL coating are polycation deposition, rising, drying, other polyanion deposition, 

and repeated until obtaining the desired thickness and properties.  
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6. PhD workshop in Cesena, Italy (2012)  

Title: Development of nano-material for food packaging  

Abstract: The aim of PhD project research is to improve the properties of food packaging 

materials and develop new food packaging materials. To the purpose, we use nano-materials to 

improve the characteristics of materials, as well as to produce nanocomposite. Particularly, 

biopolymer, cellulose nanocrystals (CNs), is considered as the main coating material for 

improving the gas barrier properties of conventional packaging materials. In order to better 

understand the relationships between nano-coating and its properties, we investigated the 

oxygen barrier and mechanical properties, morphology and thickness of nanocomposite through 

advanced instruments.  

 

 


