We present a simple and rapid method for screening nisin producers that directly identifies nisinogenic bacteria by induction of bioluminescence within the Lactococcus lactis NZ9800lux biosensor strain (Immonen and Karp, 2007, Biosensors and Bioelectronics 22, 1982-7). An overlay of putative nisinogenic colonies with the biosensor strain gives identification results within 1h. Functionality and specificity of the method were verified by screening nisin producers among 144 raw milk colonies and a panel of 91 lactococcal strains. Studies performed on strains and colonies that did not induce bioluminescence but inhibited growth of the biosensor demonstrated that only nisinogenic bacteria can cause induction. Bacteria known to produce bacteriocins other than nisin failed to induce bioluminescence, further verifying the specificity of the assay. We discovered a non-inducing but inhibitory lactococcal strain harboring a modified nisin Z gene, and demonstrated that the source of the inhibitory action is not a non-inducing variant of nisin, but a bacteriocin of lower molecular weight. The concentration of nisin producers in a raw milk sample was 1.3 × 10(2)CFU/ml. We identified from raw milk a total of seven nisin Z producing L. lactis subsp. lactis colonies, which were shown by genetic fingerprinting to belong to three different groups. Among the panel of 91 lactococci, four strains were nisin A producers, and one strain harbored the modified nisin Z gene. The method presented here is robust, cost-effective and simple to perform, and avoids the pitfalls of traditional screening methods by directly specifying the identity of the inhibitory substance.

Bioluminescence-based identification of nisin producers - a rapid and simple screening method for nisinogenic bacteria in food samples / N. Virolainen, S. Guglielmetti, S. Arioli, M. Karp. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 158:2(2012 Aug 17), pp. 126-132. [10.1016/j.ijfoodmicro.2012.07.007]

Bioluminescence-based identification of nisin producers - a rapid and simple screening method for nisinogenic bacteria in food samples

S. Guglielmetti
Secondo
;
S. Arioli
Penultimo
;
2012

Abstract

We present a simple and rapid method for screening nisin producers that directly identifies nisinogenic bacteria by induction of bioluminescence within the Lactococcus lactis NZ9800lux biosensor strain (Immonen and Karp, 2007, Biosensors and Bioelectronics 22, 1982-7). An overlay of putative nisinogenic colonies with the biosensor strain gives identification results within 1h. Functionality and specificity of the method were verified by screening nisin producers among 144 raw milk colonies and a panel of 91 lactococcal strains. Studies performed on strains and colonies that did not induce bioluminescence but inhibited growth of the biosensor demonstrated that only nisinogenic bacteria can cause induction. Bacteria known to produce bacteriocins other than nisin failed to induce bioluminescence, further verifying the specificity of the assay. We discovered a non-inducing but inhibitory lactococcal strain harboring a modified nisin Z gene, and demonstrated that the source of the inhibitory action is not a non-inducing variant of nisin, but a bacteriocin of lower molecular weight. The concentration of nisin producers in a raw milk sample was 1.3 × 10(2)CFU/ml. We identified from raw milk a total of seven nisin Z producing L. lactis subsp. lactis colonies, which were shown by genetic fingerprinting to belong to three different groups. Among the panel of 91 lactococci, four strains were nisin A producers, and one strain harbored the modified nisin Z gene. The method presented here is robust, cost-effective and simple to perform, and avoids the pitfalls of traditional screening methods by directly specifying the identity of the inhibitory substance.
Settore AGR/16 - Microbiologia Agraria
17-ago-2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
2012_IJFM_Bioluminescence lactis.pdf

accesso solo dalla rete interna

Tipologia: Publisher's version/PDF
Dimensione 842.74 kB
Formato Adobe PDF
842.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/210280
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact