Ginkgo biloba L. biflavones were shown to increase cAMP phosphodiesterase activity and to stimulate skin microcirculation. The aim of this study was to investigate whether biflavones were able to stimulate lipolysis in adipocytes. Lipolysis was assayed in fully differentiated 3T3-L1 fat cells in the presence of biflavones at 0.005 - 100 microM. Cell viability was evaluated at 0.5 -100 microM. Theophylline and caffeine were used as reference compounds. Lipolytic activity in untreated cells was 0.62 +/- 0.15 micromoles glycerol/mg DNA/h. All biflavones except sciadopitysin stimulated lipolysis in a concentration-dependent fashion. Maximal stimulation was observed at 0.1 - 0.5 microM. At higher concentrations the effect diminished progressively and was lost at 100 microM. Only a partial loss of cell viability was observed with biflavones at 10 - 100 microM.

Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes / M. Dell'Agli, E. Bosisio. - In: PLANTA MEDICA. - ISSN 0032-0943. - 68:1(2002), pp. 76-79.

Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes

M. Dell'Agli
Primo
;
E. Bosisio
Ultimo
2002

Abstract

Ginkgo biloba L. biflavones were shown to increase cAMP phosphodiesterase activity and to stimulate skin microcirculation. The aim of this study was to investigate whether biflavones were able to stimulate lipolysis in adipocytes. Lipolysis was assayed in fully differentiated 3T3-L1 fat cells in the presence of biflavones at 0.005 - 100 microM. Cell viability was evaluated at 0.5 -100 microM. Theophylline and caffeine were used as reference compounds. Lipolytic activity in untreated cells was 0.62 +/- 0.15 micromoles glycerol/mg DNA/h. All biflavones except sciadopitysin stimulated lipolysis in a concentration-dependent fashion. Maximal stimulation was observed at 0.1 - 0.5 microM. At higher concentrations the effect diminished progressively and was lost at 100 microM. Only a partial loss of cell viability was observed with biflavones at 10 - 100 microM.
Ginkgo biloba ; lipolysis ; adipocytes
Settore BIO/15 - Biologia Farmaceutica
2002
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/207893
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 37
social impact