The thermotropic behavior of palmitoylsphingomyelin vesicles containing GM1 ganglioside and cholesterol has been investigated by high-sensitivity differential scanning calorimetry. The thermograms exhibited by binary palmitoylsphingomyelin/GM1 mixtures are resolvable into two components. The relative contribution of the minor component, undetectable in the absence of ganglioside, to the total enthalpy and its transition temperature (>40 degrees C) increase with the concentration of the glycolipid embedded in the vesicles. These data suggest the occurrence of lateral phase separation and that more ordered, higher melting GM1 ganglioside-enriched domains are present within the sphingomyelin bilayer. Studies on binary sphingomyelin/cholesterol mixtures confirmed the known tendency of the sterol to decrease the total enthalpy of sphingomyelin, forming cholesterol-enriched domains. The thermograms exhibited by ternary sphingomyelin/ganglioside/cholesterol mixtures in variable proportions (up to 20% molar GM1 or Chol) displayed, on increasing the content of either the sterol or the ganglioside, features addressable to sphingomyelin/cholesterol (peaks centered at temperature 140 degrees C, decrease of enthalpy) or to sphingomyelin/GM1 mixtures (peaks centered at a temperature >40 degrees C), respectively. This trend was confirmed by deconvolution analysis, showing that the thermograms are resolvable into components addressable to GM1-enriched and to cholesterol-enriched domains. Taken all together, the results shout that the architectural features of sphingomyelin bilayers are strongly dependent on the presence of GM1 ganglioside and cholesterol, whose presence is leading to the formation of separate, GM1-enriched and cholesterol-enriched distinct domains. Ganglioside-sphingomyelin and sphingomyelin-cholesterol, together with mutual ganglioside-ganglioside, interactions could contribute to maintain a network of bonds extending to proteins, forming specialized membrane domains, such as caveolae, or others, whose experimental clues are the glycolipid-enriched detergent-insoluble fractions that can be isolated from cell membranes.

Lipid domains in the membrane : thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol / A. Ferraretto, M. Pitto, P. Palestini, M. Masserini. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 36:30(1997 Jul 29), pp. 9232-9236. [10.1021/bi970428j]

Lipid domains in the membrane : thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol

A. Ferraretto
Primo
;
1997

Abstract

The thermotropic behavior of palmitoylsphingomyelin vesicles containing GM1 ganglioside and cholesterol has been investigated by high-sensitivity differential scanning calorimetry. The thermograms exhibited by binary palmitoylsphingomyelin/GM1 mixtures are resolvable into two components. The relative contribution of the minor component, undetectable in the absence of ganglioside, to the total enthalpy and its transition temperature (>40 degrees C) increase with the concentration of the glycolipid embedded in the vesicles. These data suggest the occurrence of lateral phase separation and that more ordered, higher melting GM1 ganglioside-enriched domains are present within the sphingomyelin bilayer. Studies on binary sphingomyelin/cholesterol mixtures confirmed the known tendency of the sterol to decrease the total enthalpy of sphingomyelin, forming cholesterol-enriched domains. The thermograms exhibited by ternary sphingomyelin/ganglioside/cholesterol mixtures in variable proportions (up to 20% molar GM1 or Chol) displayed, on increasing the content of either the sterol or the ganglioside, features addressable to sphingomyelin/cholesterol (peaks centered at temperature 140 degrees C, decrease of enthalpy) or to sphingomyelin/GM1 mixtures (peaks centered at a temperature >40 degrees C), respectively. This trend was confirmed by deconvolution analysis, showing that the thermograms are resolvable into components addressable to GM1-enriched and to cholesterol-enriched domains. Taken all together, the results shout that the architectural features of sphingomyelin bilayers are strongly dependent on the presence of GM1 ganglioside and cholesterol, whose presence is leading to the formation of separate, GM1-enriched and cholesterol-enriched distinct domains. Ganglioside-sphingomyelin and sphingomyelin-cholesterol, together with mutual ganglioside-ganglioside, interactions could contribute to maintain a network of bonds extending to proteins, forming specialized membrane domains, such as caveolae, or others, whose experimental clues are the glycolipid-enriched detergent-insoluble fractions that can be isolated from cell membranes.
English
Settore BIO/10 - Biochimica
Articolo
Esperti anonimi
29-lug-1997
36
30
9232
9236
Pubblicato
Periodico con rilevanza internazionale
info:eu-repo/semantics/article
Lipid domains in the membrane : thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol / A. Ferraretto, M. Pitto, P. Palestini, M. Masserini. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 36:30(1997 Jul 29), pp. 9232-9236. [10.1021/bi970428j]
none
Prodotti della ricerca::01 - Articolo su periodico
4
262
Article (author)
Periodico senza Impact Factor
A. Ferraretto, M. Pitto, P. Palestini, M. Masserini
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/207445
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 86
social impact