A partially ordered abelian group G is said to be ultrasimplicial if for every finite set P of positive elements of G there is a finite set B of positive elements which are linearly independent in the Z-module G, and such that P belongs to the monoid generated by B. In this paper we prove the result stated in the title.

Every Abelian l-group is ultrasimplicial / V. Marra. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 225:2(2000 Mar), pp. 872-884.

Every Abelian l-group is ultrasimplicial

V. Marra
Primo
2000

Abstract

A partially ordered abelian group G is said to be ultrasimplicial if for every finite set P of positive elements of G there is a finite set B of positive elements which are linearly independent in the Z-module G, and such that P belongs to the monoid generated by B. In this paper we prove the result stated in the title.
Lattice-ordered Abelian groups ; dimension groups ; ultrasimplicial property
Settore MAT/02 - Algebra
Settore MAT/01 - Logica Matematica
Settore INF/01 - Informatica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/19815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact