Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.

Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.

Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes / C. Zuccato, T. Tartari, C. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, E. Cattaneo. - In: NATURE GENETICS. - ISSN 1061-4036. - 35:1(2003 Jul 27), pp. 76-83. [10.1038/ng1219]

Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes

C. Zuccato
Primo
;
M. Valenza;L. Conti;D. Rigamonti
Penultimo
;
E. Cattaneo
Ultimo
2003

Abstract

Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.
English
Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.
brain derived neurotrophic factor ; huntingtin ; neuron restrictive silencer element ; repressor element 1 transcription factor
Settore BIO/14 - Farmacologia
Lettera
Esperti anonimi
27-lug-2003
35
1
76
83
Pubblicato
Periodico con rilevanza internazionale
info:eu-repo/semantics/article
Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes / C. Zuccato, T. Tartari, C. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, E. Cattaneo. - In: NATURE GENETICS. - ISSN 1061-4036. - 35:1(2003 Jul 27), pp. 76-83. [10.1038/ng1219]
internalNetwork
Prodotti della ricerca::01 - Articolo su periodico
12
262
Article (author)
Periodico con Impact Factor
C. Zuccato, T. Tartari, C. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, E. Cattaneo
File in questo prodotto:
File Dimensione Formato  
15 Zuccato NatGen 2003.pdf

accesso solo dalla rete interna

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/198141
Citazioni
  • ???jsp.display-item.citation.pmc??? 351
  • Scopus 766
  • ???jsp.display-item.citation.isi??? 704
social impact