Blood levels of extracellular nucleotides (e.g. ATP) are greatly increased during heart ischaemia, but, despite the presence of their specific receptors on cardiomyocytes (both P2X and P2Y subtypes), their effects on the subsequent myocardial damage are still unknown. In this study, we aimed at investigating the role of ATP and specific P2 receptors in the appearance of cell injury in a cardiac model of ischaemic/hypoxic stress. Cells were maintained in a modular incubator chamber in a controlled humidified atmosphere of 95% N(2) for 16 hrs in a glucose-free medium. In this condition, we detected an early increase in the release of ATP in the culture medium, which was followed by a massive increase in the release of cytoplasmic histone-associated-DNA-fragments, a marker of apoptosis. Addition of either apyrase, which degrades extracellular ATP, or various inhibitors of ATP release via connexin hemichannels fully abolished ischaemic/hypoxic stress-associated apoptosis. To dissect the role of specific P2 receptor subtypes, we used a combined approach: (i) non-selective and, when available, subtype-selective P2 antagonists, were added to cardiomyocytes before ischaemic/hypoxic stress; (ii) selected P2 receptors genes were silenced via specific small interfering RNAs. Both approaches indicated that the P2Y(2) and P2χ(7) receptor subtypes are directly involved in the induction of cell death during ischaemic/hypoxic stress, whereas the P2Y(4) receptor has a protective effect. Overall, these findings indicate a role for ATP and its receptors in modulating cardiomyocyte damage during ischaemic/hypoxic stress.

Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors / S. Cosentino, C. Banfi, J.C. Burbiel, H. Luo, E. Tremoli, M.P. Abbracchio. - In: JOURNAL OF CELLULAR AND MOLECULAR MEDICINE. - ISSN 1582-1838. - 16:5(2012 May), pp. 1074-1084.

Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors

S. Cosentino
Primo
;
C. Banfi
Secondo
;
E. Tremoli
Penultimo
;
M.P. Abbracchio
Ultimo
2012

Abstract

Blood levels of extracellular nucleotides (e.g. ATP) are greatly increased during heart ischaemia, but, despite the presence of their specific receptors on cardiomyocytes (both P2X and P2Y subtypes), their effects on the subsequent myocardial damage are still unknown. In this study, we aimed at investigating the role of ATP and specific P2 receptors in the appearance of cell injury in a cardiac model of ischaemic/hypoxic stress. Cells were maintained in a modular incubator chamber in a controlled humidified atmosphere of 95% N(2) for 16 hrs in a glucose-free medium. In this condition, we detected an early increase in the release of ATP in the culture medium, which was followed by a massive increase in the release of cytoplasmic histone-associated-DNA-fragments, a marker of apoptosis. Addition of either apyrase, which degrades extracellular ATP, or various inhibitors of ATP release via connexin hemichannels fully abolished ischaemic/hypoxic stress-associated apoptosis. To dissect the role of specific P2 receptor subtypes, we used a combined approach: (i) non-selective and, when available, subtype-selective P2 antagonists, were added to cardiomyocytes before ischaemic/hypoxic stress; (ii) selected P2 receptors genes were silenced via specific small interfering RNAs. Both approaches indicated that the P2Y(2) and P2χ(7) receptor subtypes are directly involved in the induction of cell death during ischaemic/hypoxic stress, whereas the P2Y(4) receptor has a protective effect. Overall, these findings indicate a role for ATP and its receptors in modulating cardiomyocyte damage during ischaemic/hypoxic stress.
cardiomyocytes ; P2 receptors ; ischaemic; hypoxic stress ; apoptosis
Settore BIO/14 - Farmacologia
mag-2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/194895
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact