Many studies have detected in the brain of schizophrenic patients various morphological and structural abnormalities in various regions and in particular in the cortical and limbic areas. These abnormalities might in part result from neurodevelopmental disturbances suggesting that schizophrenia might have organic causes. These abnormalities may be the primary event in schizophrenia and be responsible for altered dopaminergic, but not only dopaminergic, neurotransmission in these regions. If schizophrenia is in some way strictly related to brain morphological abnormalities it becomes hard to believe that a curative treatment will ever be possible. Considering this scenario, treatment of schizophrenia will be restricted to symptomatic and preventive therapy and therefore, more effective and better tolerated antipsychotics are necessary. The widely used classical antipsychotic drugs present some disadvantages. They do not improve all symptoms of schizophrenia, are nor effective in all patients, produce a number of unpleasant and serious, and partly irreversible, motor side effects. The atypical antipsychotic clozapine constitutes a major advance in particular for patients nor responding to conventional neuroleptics. To explain the unique therapeutic effect of clozapine many hypotheses have been proposed. Most of the explanations given so far assume that the D-2 blockade is the basis for the antipsychotic activity of clozapine and that the difference in respect to other antipsychotics is due to the contribution of other receptor interactions. Considering the dopaminergic receptor in particular the recently discovered D-4 receptor subtype, it has been observed that even if several classical neuroleptics exhibit high affinity to the D-4 receptor, clozapine is more selective for this subtype compared to D-2 receptors. Moreover clozapine, differently from all other conventional neuroleptics, is a mixed but weak D-1/D-2 antagonist. This observation has prompted speculation that the synergism between D-1 and D-2 receptors might allow antipsychotic effects to be achieved below the threshold for unwanted motor side effects. Probably the D-1 antagonistic activity exerted by clozapine at low doses enhances preferentially the extracellular concentration of dopamine in specific areas of the brain, such as the prefrontal cortex, where a dopaminergic hypoactivity has been suggested to be in part responsible for negative symptoms of schizophrenia. The clozapine enhancement of dopaminergic activity in this brain area might explain its efficacy against schizophrenia negative symptoms. However, it cannot be excluded that the affinities displayed by clozapine for other nondopaminergic receptors also contribute to its unique therapeutic profile. The various hypotheses mentioned in this review need to be further validated or disproved. The only way to do that is developing new drugs where the postulated mechanistic profile is specifically realized and to clinically test these compounds.

NEW INSIGHTS INTO THE BIOLOGY OF SCHIZOPHRENIA THROUGH THE MECHANISM OF ACTION OF CLOZAPINE / N. BRUNELLO, C. MASOTTO, L. STEARDO, R. MARKSTEIN, G.A. RACAGNI. - In: NEUROPSYCHOPHARMACOLOGY. - ISSN 0893-133X. - 13:3(1995), pp. 177-213.

NEW INSIGHTS INTO THE BIOLOGY OF SCHIZOPHRENIA THROUGH THE MECHANISM OF ACTION OF CLOZAPINE

G.A. RACAGNI
Ultimo
1995

Abstract

Many studies have detected in the brain of schizophrenic patients various morphological and structural abnormalities in various regions and in particular in the cortical and limbic areas. These abnormalities might in part result from neurodevelopmental disturbances suggesting that schizophrenia might have organic causes. These abnormalities may be the primary event in schizophrenia and be responsible for altered dopaminergic, but not only dopaminergic, neurotransmission in these regions. If schizophrenia is in some way strictly related to brain morphological abnormalities it becomes hard to believe that a curative treatment will ever be possible. Considering this scenario, treatment of schizophrenia will be restricted to symptomatic and preventive therapy and therefore, more effective and better tolerated antipsychotics are necessary. The widely used classical antipsychotic drugs present some disadvantages. They do not improve all symptoms of schizophrenia, are nor effective in all patients, produce a number of unpleasant and serious, and partly irreversible, motor side effects. The atypical antipsychotic clozapine constitutes a major advance in particular for patients nor responding to conventional neuroleptics. To explain the unique therapeutic effect of clozapine many hypotheses have been proposed. Most of the explanations given so far assume that the D-2 blockade is the basis for the antipsychotic activity of clozapine and that the difference in respect to other antipsychotics is due to the contribution of other receptor interactions. Considering the dopaminergic receptor in particular the recently discovered D-4 receptor subtype, it has been observed that even if several classical neuroleptics exhibit high affinity to the D-4 receptor, clozapine is more selective for this subtype compared to D-2 receptors. Moreover clozapine, differently from all other conventional neuroleptics, is a mixed but weak D-1/D-2 antagonist. This observation has prompted speculation that the synergism between D-1 and D-2 receptors might allow antipsychotic effects to be achieved below the threshold for unwanted motor side effects. Probably the D-1 antagonistic activity exerted by clozapine at low doses enhances preferentially the extracellular concentration of dopamine in specific areas of the brain, such as the prefrontal cortex, where a dopaminergic hypoactivity has been suggested to be in part responsible for negative symptoms of schizophrenia. The clozapine enhancement of dopaminergic activity in this brain area might explain its efficacy against schizophrenia negative symptoms. However, it cannot be excluded that the affinities displayed by clozapine for other nondopaminergic receptors also contribute to its unique therapeutic profile. The various hypotheses mentioned in this review need to be further validated or disproved. The only way to do that is developing new drugs where the postulated mechanistic profile is specifically realized and to clinically test these compounds.
Atypical antipsychotic; Clozapine; Dopamine; Neuroleptic; Schizophrenia; Serotonin
Settore BIO/14 - Farmacologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/188393
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 172
social impact