Crystalline nickel sulfide (αNiS) and cobalt sulfide (CoS2) particles can cause greater cell transformation and cellular toxicity than the respective amorphous metal sulfide particles. Cultured mammalian cells phagocytose the crystalline metal sulfide particles more readily than the amorphous ones. In the case of the nickel sulfides, the crystalline metal sulfide particles had negatively charged surfaces (Zeta potential: -27.012 mV) in contrast to the amorphous particles, which were positively charged (Zeta potential: +9.174 mV). X-ray photoelectron spectroscopy analysis of amorphous and crystalline NiS particles revealed that the outermost surface (1-4 nm) of the two particles had striking differences in Ni/S ratios and in their sulfur oxidation states. Rendering particles' surfaces more negative by reduction with lithium aluminum hydride enhanced their phagocytosis, and in the case of amorphous NiS chemical reduction resulted in an incidence of morphological transformation of Syrian hamster embryo cells comparable to that observed with untreated crystalline αNiS.

The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge / M. P. Abbracchio, J. D. Heck, M. Costa. - In: CARCINOGENESIS. - ISSN 0143-3334. - 3:2(1982), pp. 175-180.

The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge

M. P. Abbracchio
Primo
;
1982

Abstract

Crystalline nickel sulfide (αNiS) and cobalt sulfide (CoS2) particles can cause greater cell transformation and cellular toxicity than the respective amorphous metal sulfide particles. Cultured mammalian cells phagocytose the crystalline metal sulfide particles more readily than the amorphous ones. In the case of the nickel sulfides, the crystalline metal sulfide particles had negatively charged surfaces (Zeta potential: -27.012 mV) in contrast to the amorphous particles, which were positively charged (Zeta potential: +9.174 mV). X-ray photoelectron spectroscopy analysis of amorphous and crystalline NiS particles revealed that the outermost surface (1-4 nm) of the two particles had striking differences in Ni/S ratios and in their sulfur oxidation states. Rendering particles' surfaces more negative by reduction with lithium aluminum hydride enhanced their phagocytosis, and in the case of amorphous NiS chemical reduction resulted in an incidence of morphological transformation of Syrian hamster embryo cells comparable to that observed with untreated crystalline αNiS.
Settore BIO/14 - Farmacologia
1982
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/185874
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 58
social impact