Stage 2 sleep is characterized by the EEG appearance of "K-complexes" and blood pressure oscillations. K-complexes may be directly related to blood pressure changes or they may reflect central sympathetic activation. We analyzed the temporal relationship among K-complexes, heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) during sleep in eight healthy volunteers (3 men and 5 women, age 22-41 yr). Most K-complexes presented as single large complexes (56 +/- 20%), followed by single small complexes (15 +/- 14%) and as couplets or triplets (13 +/- 6%). Single large K-complexes were preceded by a baroreflex-mediated increase of MSNA in approximately one-half (55%) of the cases. Detailed analysis of HR, BP, and MSNA was possible in 63 (45%) large single K-complexes not disturbed by preceding baroreflex-related changes. Systolic and diastolic BP and MSNA increased significantly after single events (22.5 +/- 13, 5.2 +/- 2.1, and 6.5 +/- 3.0%). Mean sympathetic baroreflex latency was similar after the single large K-complexes compared with the mean value during stage 2 sleep (1,290 +/- 126 vs. 1,279 +/- 61 ms). The area under the burst was significantly increased after single large K-complexes (median 3.9 vs. 9.0 arbitrary units, P < 0.03). The results support the hypothesis that K-complexes express cortical activation leading to temporary facilitation of sympathetic outflow in a graded fashion. Their functional effects appear to be independent of baroreflex modulation of MSNA in approximately 50% of the cases.
Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans / J. Tank, A. Diedrich, N. Hale, F.E. Niaz, R. Furlan, R.M. Roberson, R. Mosqueda-Garcia. - In: AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY. - ISSN 0363-6119. - 285:1(2003), pp. R208-R214.
Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans
R. Furlan;
2003
Abstract
Stage 2 sleep is characterized by the EEG appearance of "K-complexes" and blood pressure oscillations. K-complexes may be directly related to blood pressure changes or they may reflect central sympathetic activation. We analyzed the temporal relationship among K-complexes, heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) during sleep in eight healthy volunteers (3 men and 5 women, age 22-41 yr). Most K-complexes presented as single large complexes (56 +/- 20%), followed by single small complexes (15 +/- 14%) and as couplets or triplets (13 +/- 6%). Single large K-complexes were preceded by a baroreflex-mediated increase of MSNA in approximately one-half (55%) of the cases. Detailed analysis of HR, BP, and MSNA was possible in 63 (45%) large single K-complexes not disturbed by preceding baroreflex-related changes. Systolic and diastolic BP and MSNA increased significantly after single events (22.5 +/- 13, 5.2 +/- 2.1, and 6.5 +/- 3.0%). Mean sympathetic baroreflex latency was similar after the single large K-complexes compared with the mean value during stage 2 sleep (1,290 +/- 126 vs. 1,279 +/- 61 ms). The area under the burst was significantly increased after single large K-complexes (median 3.9 vs. 9.0 arbitrary units, P < 0.03). The results support the hypothesis that K-complexes express cortical activation leading to temporary facilitation of sympathetic outflow in a graded fashion. Their functional effects appear to be independent of baroreflex modulation of MSNA in approximately 50% of the cases.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.