Glutamate transporters play an important role in the regulation of extracellular glutamate concentrations in the mammalian brain and are, thus, promising targets for therapeutics. Despite this importance, the development of pharmacological tools has mainly focused on the synthesis of competitive inhibitors, which are amino acid analogues that bind to the substrate binding site. In this report, we describe the characterization of the mechanism of glutamate transporter inhibition by a constrained, cyclic glutamate analogue, (+)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-4]-isoxazole-6-carboxylic acid [(+)-(3aS,6S,6aS)-HIP-B]. Our results show that (+)-HIP-B is a nontransportable amino acid that inhibits glutamate transporter function in a mixed mechanism. Although (+)-HIP-B inhibits the glutamate-associated anion conductance, it has no effect on the leak anion conductance, in contrast to competitive inhibitors. Furthermore, (+)-HIP-B is unable to alleviate the effect of the competitive inhibitor DL-threo-beta-benzyloxyaspartic acid (TBOA), which binds to the substrate binding site. (+)-HIP-B is more potent in inhibiting forward transport compared to reverse transport. In a mutant transporter, which is activated by glutamine, but not glutamate, (+)-HIP-B still acts as an inhibitor, although this mutant transporter is insensitive to TBOA. Finally, we analyzed the effect of (+)-HIP-B on the pre-steady-state kinetics of the glutamate transporter. The results can be explained with a mixed mechanism at a site that may be distinct from the substrate binding site, with a preference for the inward-facing configuration of the transporter and slow inhibitor binding. (+)-HIP-B may represent a new paradigm of glutamate transporter inhibition that is based on targeting of a regulatory site.

Mechanism of inhibition of the glutamate transporter EAAC1 by the conformationally-constrained glutamate analog (+)-HIP-B / R. Callender, A. Gameiro, A. Pinto, C. De Micheli, C. Grewer. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 51:27(2012 Jul 10), pp. 5486-5495. [10.1021/bi3006048]

Mechanism of inhibition of the glutamate transporter EAAC1 by the conformationally-constrained glutamate analog (+)-HIP-B

A. Pinto;C. De Micheli
Penultimo
;
2012

Abstract

Glutamate transporters play an important role in the regulation of extracellular glutamate concentrations in the mammalian brain and are, thus, promising targets for therapeutics. Despite this importance, the development of pharmacological tools has mainly focused on the synthesis of competitive inhibitors, which are amino acid analogues that bind to the substrate binding site. In this report, we describe the characterization of the mechanism of glutamate transporter inhibition by a constrained, cyclic glutamate analogue, (+)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-4]-isoxazole-6-carboxylic acid [(+)-(3aS,6S,6aS)-HIP-B]. Our results show that (+)-HIP-B is a nontransportable amino acid that inhibits glutamate transporter function in a mixed mechanism. Although (+)-HIP-B inhibits the glutamate-associated anion conductance, it has no effect on the leak anion conductance, in contrast to competitive inhibitors. Furthermore, (+)-HIP-B is unable to alleviate the effect of the competitive inhibitor DL-threo-beta-benzyloxyaspartic acid (TBOA), which binds to the substrate binding site. (+)-HIP-B is more potent in inhibiting forward transport compared to reverse transport. In a mutant transporter, which is activated by glutamine, but not glutamate, (+)-HIP-B still acts as an inhibitor, although this mutant transporter is insensitive to TBOA. Finally, we analyzed the effect of (+)-HIP-B on the pre-steady-state kinetics of the glutamate transporter. The results can be explained with a mixed mechanism at a site that may be distinct from the substrate binding site, with a preference for the inward-facing configuration of the transporter and slow inhibitor binding. (+)-HIP-B may represent a new paradigm of glutamate transporter inhibition that is based on targeting of a regulatory site.
RAT-BRAIN ; ACID ; ASPARTATE ; TRANSLOCATION ; EXPRESSION ; BLOCKERS ; RELEASE ; GLT-1
Settore CHIM/08 - Chimica Farmaceutica
Settore BIO/10 - Biochimica
Article (author)
File in questo prodotto:
File Dimensione Formato  
biochemistry 2012.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/178866
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact