It is known that gangliosides have various important biological functions, and their functions as well as their biosynthesis are currently clarified (1, 2). In vertebrates, almost all the ganglio-series gangliosides are synthesized from a common precursor, ganglioside GM3, which has the simplest structure among the major gangliosides. GM3 itself is known to participate in induction of differentiation, modulation of proliferation, signal transduction and integrin-mediated cell adhesion. GM3 synthase (EC 2.4.99.9, ST3Gal V) is the enzyme involved in the last step of GM3 biosynthesis: it catalyses the transfer of a sialic acid moiety from CMP-sialic acid onto lactosylceramide, forming an a2-3 linkage. Whereas GM3 is ubiquitously distributed in the plasma membranes of all eukaryotic cells, GM3 synthase results expressed in a tissue specific manner, especially in brain, placenta, muscle and testis (3). Many important issues, such as human cDNA identification and characterization, genomic structure and regulation of gene expression, are still open. To isolate the coding sequence of the gene of GM3 synthase from human placenta we used the 5’- and 3’-Rapid Amplification of cDNA Ends technology (SMART RACE cDNA Amplification Kit, Clontech) using, as specific primers, oligonucleotides derived from the human GM3 synthase cDNA sequence from differentiated HL60 cells (3). The different PCR products were cloned into the pCR2.1 vector (TA Cloning Kit, InVitrogen) and the nucleotide sequence was determined. A cDNA, showing high sequence homology with that encoding the human GM3 synthase from TPA-differentiated HL60 cells (3), has been successfully isolated and cloned from human placenta. The major difference between these two cDNAs is in the 5’-end, according to the existence of different promoter regions, responsible for tissue-specific expression of the gene. Furthermore, the cDNA from the human placenta contains, upstream and in frame with the ATG indicated as translation initiation site for the GM3 synthase of HL60 cells, another ATG codon inserted in a sequence compatible with Kozak’s rule, suggesting that the protein of the human placenta has an additional portion in NH2-terminus. The complete coding region of the human placenta cDNA is going to be cloned in an expression vector, under the control of the CMV promoter, in order to evaluate its activity. On the other hand, in vitro translation experiments are going to be carried out to define the first start codon. 1) Hakomori S.I. (2000): Glycoconj. J. 17, 627-647 2) Kolter T. et al. (2002): J.Biol.Chem. 277, 25859-25862 3) Ishii A. et al. (1998): J.B.C. 273, 31652-31655

ISOLATION AND CHARACTERIZATION OF THE GM3 SYNTHASE cDNA FROM HUMAN PLACENTA / E. Sottocornola, P.V. Berselli, S. Zava, B. Berra, I. Colombo. ((Intervento presentato al 2. convegno Sphingolipid Club tenutosi a Lago D'Iseo nel 2003.

ISOLATION AND CHARACTERIZATION OF THE GM3 SYNTHASE cDNA FROM HUMAN PLACENTA

E. Sottocornola
Primo
;
P.V. Berselli
Secondo
;
S. Zava;B. Berra
Penultimo
;
I. Colombo
Ultimo
2003

Abstract

It is known that gangliosides have various important biological functions, and their functions as well as their biosynthesis are currently clarified (1, 2). In vertebrates, almost all the ganglio-series gangliosides are synthesized from a common precursor, ganglioside GM3, which has the simplest structure among the major gangliosides. GM3 itself is known to participate in induction of differentiation, modulation of proliferation, signal transduction and integrin-mediated cell adhesion. GM3 synthase (EC 2.4.99.9, ST3Gal V) is the enzyme involved in the last step of GM3 biosynthesis: it catalyses the transfer of a sialic acid moiety from CMP-sialic acid onto lactosylceramide, forming an a2-3 linkage. Whereas GM3 is ubiquitously distributed in the plasma membranes of all eukaryotic cells, GM3 synthase results expressed in a tissue specific manner, especially in brain, placenta, muscle and testis (3). Many important issues, such as human cDNA identification and characterization, genomic structure and regulation of gene expression, are still open. To isolate the coding sequence of the gene of GM3 synthase from human placenta we used the 5’- and 3’-Rapid Amplification of cDNA Ends technology (SMART RACE cDNA Amplification Kit, Clontech) using, as specific primers, oligonucleotides derived from the human GM3 synthase cDNA sequence from differentiated HL60 cells (3). The different PCR products were cloned into the pCR2.1 vector (TA Cloning Kit, InVitrogen) and the nucleotide sequence was determined. A cDNA, showing high sequence homology with that encoding the human GM3 synthase from TPA-differentiated HL60 cells (3), has been successfully isolated and cloned from human placenta. The major difference between these two cDNAs is in the 5’-end, according to the existence of different promoter regions, responsible for tissue-specific expression of the gene. Furthermore, the cDNA from the human placenta contains, upstream and in frame with the ATG indicated as translation initiation site for the GM3 synthase of HL60 cells, another ATG codon inserted in a sequence compatible with Kozak’s rule, suggesting that the protein of the human placenta has an additional portion in NH2-terminus. The complete coding region of the human placenta cDNA is going to be cloned in an expression vector, under the control of the CMV promoter, in order to evaluate its activity. On the other hand, in vitro translation experiments are going to be carried out to define the first start codon. 1) Hakomori S.I. (2000): Glycoconj. J. 17, 627-647 2) Kolter T. et al. (2002): J.Biol.Chem. 277, 25859-25862 3) Ishii A. et al. (1998): J.B.C. 273, 31652-31655
2003
Settore BIO/10 - Biochimica
ISOLATION AND CHARACTERIZATION OF THE GM3 SYNTHASE cDNA FROM HUMAN PLACENTA / E. Sottocornola, P.V. Berselli, S. Zava, B. Berra, I. Colombo. ((Intervento presentato al 2. convegno Sphingolipid Club tenutosi a Lago D'Iseo nel 2003.
Conference Object
File in questo prodotto:
File Dimensione Formato  
AbsSPLClub.doc

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 25.5 kB
Formato Microsoft Word
25.5 kB Microsoft Word Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/167966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact