We prove that any invariant hypercomplex structure on a homogeneous space $M = G/L$ where $G$ is a compact Lie group is obtained via the Joyce's construction, provided that there exists a hyper-Hermitian naturally reductive invariant metric on $M$.

Homogeneous hypercomplex structures and the Joyce's construction / L. Bedulli, A. Gori, F. Podestà. - In: DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. - ISSN 0926-2245. - 29:4(2011 Aug), pp. 547-554.

Homogeneous hypercomplex structures and the Joyce's construction

A. Gori
Secondo
;
2011

Abstract

We prove that any invariant hypercomplex structure on a homogeneous space $M = G/L$ where $G$ is a compact Lie group is obtained via the Joyce's construction, provided that there exists a hyper-Hermitian naturally reductive invariant metric on $M$.
Settore MAT/03 - Geometria
ago-2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/162299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact