We consider compact symplectic manifolds acted on effectively by a compact connected Lie group K in a Hamiltonian fashion. We prove that the squared moment map ∥μ∥2 is constant if and only if K is semisimple and the manifold is K-equivariantly symplectomorphic to a product of a flag manifold and a compact symplectic manifold which is acted on trivially by K. In the almost-Kähler setting the symplectomorphism turns out to be an isometry.

A splitting result for compact symplectic manifolds / L. Bedulli, A. Gori. - In: RESULTS IN MATHEMATICS. - ISSN 1422-6383. - 47:3-4(2005), pp. 194-198. [10.1007/BF03323025]

A splitting result for compact symplectic manifolds

A. Gori
Ultimo
2005

Abstract

We consider compact symplectic manifolds acted on effectively by a compact connected Lie group K in a Hamiltonian fashion. We prove that the squared moment map ∥μ∥2 is constant if and only if K is semisimple and the manifold is K-equivariantly symplectomorphic to a product of a flag manifold and a compact symplectic manifold which is acted on trivially by K. In the almost-Kähler setting the symplectomorphism turns out to be an isometry.
moment map
Settore MAT/03 - Geometria
2005
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bedulli-Gori2005_Article_ASplittingResultForCompactSymp.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/162135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact