Treatment of diabetes complications remains a substantial challenge. The aim of this study was to explore the ability of the soy isoflavone genistein in attenuating the signs that follow diabetes onset: nociceptive hypersensitivity, oxidative and inflammatory state, nerve growth factor (NGF) decrease and vascular dysfunctions. Genistein (3 and 6 mg/kg) was administered to C57BL/6J streptozotocin diabetic mice from the 2nd till the 5th week after disease induction. The hind paw withdrawal threshold to mechanical stimulation (tactile allodynia) was evaluated by a von Frey filament. The oxidative stress was assessed measuring: reactive oxygen species by fluorimetric analysis, both the lipoperoxide content, as malondialdehyde, the antioxidant enzymatic activities spectrophotometrically and the glutathione content spectrofluorimetrically. Proinflammatory cytokines and NGF were measured in the sciatic nerve by enzyme-linked immunosorbent assay. Aortic inducible (iNOS) and endothelial nitric oxide synthase (eNOS) protein content was measured by western immunoblotting. Genistein relieved diabetic peripheral painful neuropathy, reverted the proinflammatory cytokine and reactive oxygen species overproduction, and restored the NGF content in diabetic sciatic nerve. Furthermore it restored the GSH content and the GSH and GSSG ratio, improved the antioxidant enzymes activities, decreased reactive oxygen species and lipoperoxide level in the brain and liver. Finally it restored the iNOS and eNOS content and the superoxide dismutase activity in thoracic aorta. Hyperglycaemia and weight decrease were not affected. Genistein is able to reverse a diabetes established condition of allodynia, oxidative stress and inflammation, ameliorates NGF content and the vascular dysfunction, thus suggesting its possible therapeutic use for diabetes complications.

The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model / A.E. Valsecchi, S. Franchi, A.E. Panerai, A. Rossi, P.G. Sacerdote, M. Colleoni. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - 650:2-3(2011 Jan), pp. 694-702. [10.1016/j.ejphar.2010.10.060]

The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model

A.E. Valsecchi
Primo
;
S. Franchi
Secondo
;
A.E. Panerai;P.G. Sacerdote
Penultimo
;
M. Colleoni
2011

Abstract

Treatment of diabetes complications remains a substantial challenge. The aim of this study was to explore the ability of the soy isoflavone genistein in attenuating the signs that follow diabetes onset: nociceptive hypersensitivity, oxidative and inflammatory state, nerve growth factor (NGF) decrease and vascular dysfunctions. Genistein (3 and 6 mg/kg) was administered to C57BL/6J streptozotocin diabetic mice from the 2nd till the 5th week after disease induction. The hind paw withdrawal threshold to mechanical stimulation (tactile allodynia) was evaluated by a von Frey filament. The oxidative stress was assessed measuring: reactive oxygen species by fluorimetric analysis, both the lipoperoxide content, as malondialdehyde, the antioxidant enzymatic activities spectrophotometrically and the glutathione content spectrofluorimetrically. Proinflammatory cytokines and NGF were measured in the sciatic nerve by enzyme-linked immunosorbent assay. Aortic inducible (iNOS) and endothelial nitric oxide synthase (eNOS) protein content was measured by western immunoblotting. Genistein relieved diabetic peripheral painful neuropathy, reverted the proinflammatory cytokine and reactive oxygen species overproduction, and restored the NGF content in diabetic sciatic nerve. Furthermore it restored the GSH content and the GSH and GSSG ratio, improved the antioxidant enzymes activities, decreased reactive oxygen species and lipoperoxide level in the brain and liver. Finally it restored the iNOS and eNOS content and the superoxide dismutase activity in thoracic aorta. Hyperglycaemia and weight decrease were not affected. Genistein is able to reverse a diabetes established condition of allodynia, oxidative stress and inflammation, ameliorates NGF content and the vascular dysfunction, thus suggesting its possible therapeutic use for diabetes complications.
Cytokines; Diabetes; Genistein; Nerve growth factor; Neuropathy; Oxidative stress
Settore BIO/14 - Farmacologia
gen-2011
2-nov-2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
panerai ejp.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/149296
Citazioni
  • ???jsp.display-item.citation.pmc??? 50
  • Scopus 153
  • ???jsp.display-item.citation.isi??? 135
social impact