Protein–bile acid interactions are crucial microscopic events at the basis of both physiological and pathological biochemical pathways. BABPs (bile-acid-binding proteins) are intracellular transporters able to bind ligands with different stoichiometry, selectivity and co-operativity. The molecular determinants and energetics of interaction are the observables that connect the microscopic to the macroscopic frameworks. The present paper addresses the study and proposes a mechanism for the multi-site interaction of bile acids with chicken I-BABP (ileal BABP) with the aim of elucidating the determinants of ligand binding in comparison with homologous proteins from different species and tissues. A thermodynamic binding model describing two independent consecutive binding sites is derived from isothermal titration calorimetry experiments and validated on the basis of both protein-observed and ligandobserved NMR titration data. It emerges that a singly bound protein is relatively abundant at low ligand/protein molar ratios assessing the absence of strong co-operativity. Both the measured energetics of binding and the distributed protein chemical-shift perturbations are in agreementwith a first binding event triggering a global structural rearrangement. The enthalpic and entropic contributions associated with binding of the first ligand indicate that the interaction increases stability and order of the bound protein. The results described in the present study point to the presence of a protein scaffold which is able to establish long-range communication networks, but does not manifest positive-binding co-operativity, as observed for the human protein. We consider chicken I-BABP a suitable model to address the molecular basis for a gain-of-function on going from non-mammalian to mammalian species.

Chicken ileal bile acid binding protein: a promising target of investigation to understand binding cooperativity across the protein family / M. Guariento, M. Assfalg, S. Zanzoni, D. Fessas, R. Longhi, H. Molinari. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - 425:2(2010), pp. 413-424. [10.1042/BJ20091209]

Chicken ileal bile acid binding protein: a promising target of investigation to understand binding cooperativity across the protein family

D. Fessas;
2010

Abstract

Protein–bile acid interactions are crucial microscopic events at the basis of both physiological and pathological biochemical pathways. BABPs (bile-acid-binding proteins) are intracellular transporters able to bind ligands with different stoichiometry, selectivity and co-operativity. The molecular determinants and energetics of interaction are the observables that connect the microscopic to the macroscopic frameworks. The present paper addresses the study and proposes a mechanism for the multi-site interaction of bile acids with chicken I-BABP (ileal BABP) with the aim of elucidating the determinants of ligand binding in comparison with homologous proteins from different species and tissues. A thermodynamic binding model describing two independent consecutive binding sites is derived from isothermal titration calorimetry experiments and validated on the basis of both protein-observed and ligandobserved NMR titration data. It emerges that a singly bound protein is relatively abundant at low ligand/protein molar ratios assessing the absence of strong co-operativity. Both the measured energetics of binding and the distributed protein chemical-shift perturbations are in agreementwith a first binding event triggering a global structural rearrangement. The enthalpic and entropic contributions associated with binding of the first ligand indicate that the interaction increases stability and order of the bound protein. The results described in the present study point to the presence of a protein scaffold which is able to establish long-range communication networks, but does not manifest positive-binding co-operativity, as observed for the human protein. We consider chicken I-BABP a suitable model to address the molecular basis for a gain-of-function on going from non-mammalian to mammalian species.
Settore CHIM/02 - Chimica Fisica
Settore BIO/10 - Biochimica
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/142284
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact