Predicting pathogenic single nucleotide variants (SNVs) in non-coding regions of the human genome presents a significant challenge for the extreme class imbalance between pathogenic “positive” variants and physiological “negative” ones, since most machine learning methods are biased toward predicting negative examples. We designed two “block-shaped” tabular-DNN architectures: a Modular Block-Deep Neural Network (MoB-DNN) and a tabular Residual Network (T-ResNet), able to address the class imbalance problem through a mini-batch balancing strategy. We employed a hierarchical optimization approach to efficiently tune hyper-parameters related to training procedure, architecture, batch size, and mini-batch balancing ratio. Our experimental results demonstrate that T-ResNet outperforms and MoB-DNN shows competitive performance with a state-of-the-art hyper-ensemble method, suggesting that residual connections provide significant advantages for capturing complex patterns in non coding regions of the human genome.

Modular Deep Neural Networks with Residual Connections for Predicting the Pathogenicity of Genetic Variants in Non Coding Genomic Regions / F. Stacchietti, M. Nicolini, L. Chimirri, P.N. Robinson, E. Casiraghi, G. Valentini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Advances in Computational Intelligence / [a cura di] Ignacio Rojas, Gonzalo Joya, Andreu Catala. - [s.l] : Springer, 2026. - ISBN 9783032027245. - pp. 398-410 (( Intervento presentato al 18. convegno IWANN International Work-Conference on Artificial Neural Networks Part I : June 16–18 tenutosi a Coruña (Spagna) nel 2025 [10.1007/978-3-032-02725-2_31].

Modular Deep Neural Networks with Residual Connections for Predicting the Pathogenicity of Genetic Variants in Non Coding Genomic Regions

F. Stacchietti
Primo
;
M. Nicolini
Secondo
;
E. Casiraghi
Penultimo
;
G. Valentini
Ultimo
2026

Abstract

Predicting pathogenic single nucleotide variants (SNVs) in non-coding regions of the human genome presents a significant challenge for the extreme class imbalance between pathogenic “positive” variants and physiological “negative” ones, since most machine learning methods are biased toward predicting negative examples. We designed two “block-shaped” tabular-DNN architectures: a Modular Block-Deep Neural Network (MoB-DNN) and a tabular Residual Network (T-ResNet), able to address the class imbalance problem through a mini-batch balancing strategy. We employed a hierarchical optimization approach to efficiently tune hyper-parameters related to training procedure, architecture, batch size, and mini-batch balancing ratio. Our experimental results demonstrate that T-ResNet outperforms and MoB-DNN shows competitive performance with a state-of-the-art hyper-ensemble method, suggesting that residual connections provide significant advantages for capturing complex patterns in non coding regions of the human genome.
English
Deep and modular neural models; Pathogenic variant prediction; Residual connections;
Settore INFO-01/A - Informatica
Intervento a convegno
Comitato scientifico
Pubblicazione scientifica
   National Center for Gene Therapy and Drugs based on RNA Technology (CN3 RNA)
   CN3 RNA
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   CN00000041

   High velocity and high transmittivity loop unit for optical quantum computing LOOQ
   LOOQ
   POLITECNICO DI MILANO
   CN00000013
Advances in Computational Intelligence
Ignacio Rojas, Gonzalo Joya, Andreu Catala
Springer
2026
2-ott-2025
398
410
13
9783032027245
9783032027252
16008 LNCS
Volume a diffusione internazionale
No
IWANN International Work-Conference on Artificial Neural Networks Part I : June 16–18
Coruña (Spagna)
2025
18
Convegno internazionale
orcid
Aderisco
F. Stacchietti, M. Nicolini, L. Chimirri, P.N. Robinson, E. Casiraghi, G. Valentini
Book Part (author)
reserved
273
Modular Deep Neural Networks with Residual Connections for Predicting the Pathogenicity of Genetic Variants in Non Coding Genomic Regions / F. Stacchietti, M. Nicolini, L. Chimirri, P.N. Robinson, E. Casiraghi, G. Valentini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Advances in Computational Intelligence / [a cura di] Ignacio Rojas, Gonzalo Joya, Andreu Catala. - [s.l] : Springer, 2026. - ISBN 9783032027245. - pp. 398-410 (( Intervento presentato al 18. convegno IWANN International Work-Conference on Artificial Neural Networks Part I : June 16–18 tenutosi a Coruña (Spagna) nel 2025 [10.1007/978-3-032-02725-2_31].
info:eu-repo/semantics/bookPart
6
Prodotti della ricerca::03 - Contributo in volume
File in questo prodotto:
File Dimensione Formato  
stacchietti_et_al.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 492.97 kB
Formato Adobe PDF
492.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1193956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact