A mathematical model able to describe the release kinetics of two model drugs (Diprophylline and Theophylline) from partially coated hydroxypropylmethylcellulose (HPMC, Methocel) K4M) matrices is presented. As solvent interaction with the system and drug release can only take place in one direction, the physical frame to be modeled turns out simpler. The model was developed starting from the established equation describing drug dissolution and taking into account the resistance to drug release given by the presence of a growing gel barrier around a matrix system. The model fits the release data obtained from both series of hydrophilic matrices containing increasing amounts (from 0.2 to 0.8 mass ratio) of the two xanthine derivatives. Differences were found in drug release rate according to the different solubility of the actives. Interestingly, however, there is no further reduction in the outer gel layer permeability when the polymer mass fraction exceeds a certain value, with both Theophylline and Diprophylline systems. Results confirm the importance of the fraction of the glassy/rubbery interface held by the active substance in defining the release rate from hydrophilic systems

Modeling of drug release from partially coated matrices made of a high viscosity HPMC / M. Grassi, L. Zema, M.E. Sangalli, A. Maroni, F. Giordano, A. Gazzaniga. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - 276:1-2(2004), pp. 107-114.

Modeling of drug release from partially coated matrices made of a high viscosity HPMC

L. Zema;M.E. Sangalli;A. Maroni;A. Gazzaniga
2004

Abstract

A mathematical model able to describe the release kinetics of two model drugs (Diprophylline and Theophylline) from partially coated hydroxypropylmethylcellulose (HPMC, Methocel) K4M) matrices is presented. As solvent interaction with the system and drug release can only take place in one direction, the physical frame to be modeled turns out simpler. The model was developed starting from the established equation describing drug dissolution and taking into account the resistance to drug release given by the presence of a growing gel barrier around a matrix system. The model fits the release data obtained from both series of hydrophilic matrices containing increasing amounts (from 0.2 to 0.8 mass ratio) of the two xanthine derivatives. Differences were found in drug release rate according to the different solubility of the actives. Interestingly, however, there is no further reduction in the outer gel layer permeability when the polymer mass fraction exceeds a certain value, with both Theophylline and Diprophylline systems. Results confirm the importance of the fraction of the glassy/rubbery interface held by the active substance in defining the release rate from hydrophilic systems
Modeling, Hydroxypropylmethylcellulose (HPMC), Hydrophilic matrix, Release mechanism
Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/11918
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 33
social impact