We present Qiboml, an open-source software library for orchestrating quantum and classical components in hybrid machine learning workflows. Building on Qibo's quantum computing capabilities and integrating with popular machine learning frameworks such as TensorFlow and PyTorch, Qiboml enables the construction of quantum and hybrid models that can run on a broad range of backends: (i) multi-threaded CPUs, GPUs, and multi-GPU systems for simulation with statevector or tensor network methods; (ii) quantum processing units, both on-premise and through cloud providers. In this paper, we showcase its functionalities, including diverse simulation options, noise-aware simulations, and real-time error mitigation and calibration.

Qiboml: towards the orchestration of quantum-classical machine learning / M. Robbiati, A. Papaluca, A. Pasquale, E. Pedicillo, R.M.S. Farias, A. Sopena, M. Robbiano, G. Alramahi, S. Bordoni, A. Candido, N. Laurora, J. Suda Neto, Y. Paul Tan, M. Grossi, S. Carrazza. - (2025 Oct 13).

Qiboml: towards the orchestration of quantum-classical machine learning

M. Robbiati
Primo
;
A. Papaluca
Secondo
;
A. Pasquale;E. Pedicillo;S. Carrazza
Ultimo
2025

Abstract

We present Qiboml, an open-source software library for orchestrating quantum and classical components in hybrid machine learning workflows. Building on Qibo's quantum computing capabilities and integrating with popular machine learning frameworks such as TensorFlow and PyTorch, Qiboml enables the construction of quantum and hybrid models that can run on a broad range of backends: (i) multi-threaded CPUs, GPUs, and multi-GPU systems for simulation with statevector or tensor network methods; (ii) quantum processing units, both on-premise and through cloud providers. In this paper, we showcase its functionalities, including diverse simulation options, noise-aware simulations, and real-time error mitigation and calibration.
Quantum Physics; Quantum Physics
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
13-ott-2025
http://arxiv.org/abs/2510.11773v1
File in questo prodotto:
File Dimensione Formato  
2510.11773v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1188420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact