Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
Targeting multi-loop integrals with neural networks / R. Winterhalder, V. Magerya, E. Villa, S.P. Jones, M. Kerner, A. Butter, G. Heinrich, T. Plehn. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 12:4(2022 Apr 13), pp. 129.1-129.19. [10.21468/SCIPOSTPHYS.12.4.129]
Targeting multi-loop integrals with neural networks
R. Winterhalder
Primo
;
2022
Abstract
Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.| File | Dimensione | Formato | |
|---|---|---|---|
|
SciPostPhys_12_4_129.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




