Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.

Targeting multi-loop integrals with neural networks / R. Winterhalder, V. Magerya, E. Villa, S.P. Jones, M. Kerner, A. Butter, G. Heinrich, T. Plehn. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 12:4(2022 Apr 13), pp. 129.1-129.19. [10.21468/SCIPOSTPHYS.12.4.129]

Targeting multi-loop integrals with neural networks

R. Winterhalder
Primo
;
2022

Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
13-apr-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_12_4_129.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
  • OpenAlex ND
social impact