The matrix element method is the LHC inference method of choice for limited statistics. We present a dedicated machine learning framework, based on efficient phase-space integration, a learned acceptance and transfer function. It is based on a choice of INN and diffusion networks, and a transformer to solve jet combinatorics. We showcase this setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top production.

Precision-machine learning for the matrix element method / T. Heimel, N. Huetsch, R. Winterhalder, T. Plehn, A. Butter. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 17:5(2024 Nov), pp. 129.1-129.33. [10.21468/SciPostPhys.17.5.129]

Precision-machine learning for the matrix element method

R. Winterhalder;
2024

Abstract

The matrix element method is the LHC inference method of choice for limited statistics. We present a dedicated machine learning framework, based on efficient phase-space integration, a learned acceptance and transfer function. It is based on a choice of INN and diffusion networks, and a transformer to solve jet combinatorics. We showcase this setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top production.
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_17_5_129.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact