In this paper we prove a strong version of the Hilbert Nullstellensatz in the ring $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in several quaternionic variables. Our proof deeply depends on a detailed analysis of the common zeros of slice regular polynomials which belong to an ideal in $\mathbb H[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion of algebraic set in the quaternionic setting, which allows us to define a Zariski-type topology on $\mathbb H^n$.

A strong version of the Hilbert Nullstellensatz for Slice Regular Polynomials in several quaternionic variables / A. Gori, G. Sarfatti, F. Vlacci. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - (2026), pp. 1-22. [Epub ahead of print] [10.1016/j.jalgebra.2025.08.039]

A strong version of the Hilbert Nullstellensatz for Slice Regular Polynomials in several quaternionic variables

A. Gori
Primo
;
2026

Abstract

In this paper we prove a strong version of the Hilbert Nullstellensatz in the ring $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in several quaternionic variables. Our proof deeply depends on a detailed analysis of the common zeros of slice regular polynomials which belong to an ideal in $\mathbb H[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion of algebraic set in the quaternionic setting, which allows us to define a Zariski-type topology on $\mathbb H^n$.
Nullstellensatz, quaternionic slice regular polynomials, algebraic sets
Settore MATH-02/B - Geometria
2026
17-set-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
2402.16784v3.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Publisher
Dimensione 392.77 kB
Formato Adobe PDF
392.77 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021869325005253-main.pdf

accesso riservato

Descrizione: In Press, Journal Pre-proof, online first
Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 494.82 kB
Formato Adobe PDF
494.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1183798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact