This study introduces a novel computational approach based on ratchet-and-pawl molecular dynamics (rMD) for accurately estimating ligand dissociation kinetics in protein-ligand complexes. By integrating Kramers's theory with Bell's equation, our method systematically investigates the relationship between the effective biasing force applied during simulations and the ligand residence times. The proposed technique is demonstrated through extensive simulations of the benzamidine-trypsin complex, employing first an implicit solvent model (multi-eGO) to set up the approach parameters and then an explicit solvent model. Our results illustrate the method's reliability, accuracy, and computational efficiency, with calculated kinetic rates closely matching experimental values. Overall, this study highlights rMD as a versatile and efficient non-equilibrium methodology, broadly applicable to kinetic analyses in chemical and biological systems.

Kinetic rate calculation via non-equilibrium dynamics / B. Stegani, R. Capelli. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 163:10(2025), pp. 1-9. [10.1063/5.0277524]

Kinetic rate calculation via non-equilibrium dynamics

B. Stegani
Primo
;
R. Capelli
Ultimo
2025

Abstract

This study introduces a novel computational approach based on ratchet-and-pawl molecular dynamics (rMD) for accurately estimating ligand dissociation kinetics in protein-ligand complexes. By integrating Kramers's theory with Bell's equation, our method systematically investigates the relationship between the effective biasing force applied during simulations and the ligand residence times. The proposed technique is demonstrated through extensive simulations of the benzamidine-trypsin complex, employing first an implicit solvent model (multi-eGO) to set up the approach parameters and then an explicit solvent model. Our results illustrate the method's reliability, accuracy, and computational efficiency, with calculated kinetic rates closely matching experimental values. Overall, this study highlights rMD as a versatile and efficient non-equilibrium methodology, broadly applicable to kinetic analyses in chemical and biological systems.
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Settore CHEM-02/A - Chimica fisica
2025
8-set-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
JCP25-AR-PARI2025-01544.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 522.78 kB
Formato Adobe PDF
522.78 kB Adobe PDF Visualizza/Apri
104103_1_5.0277524(1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 6.65 MB
Formato Adobe PDF
6.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1183535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact