This study evaluates the environmental impact of swimming goggles through a Life Cycle Assessment (LCA), comparing virgin and recycled polycarbonate models. It identifies key hotspots, assesses circular economy benefits, and examines barriers to sustainable disposal, aligning with European Union’s (EU) 2050 sustainability objectives. The LCA was modeled using SimaPro, with the Environmental Footprint (EF) 3.1 method to analyze 16 impact categories (e.g., climate change, human toxicity, resource depletion). Two scenarios were assessed: (1) virgin polycarbonate production and (2) a closed-loop system (80% recycled content, 30% reintegration). Primary data from a survey of 150 competitive swimmers quantified disposal behaviors. The lens production phase (bisphenol A processing) dominated impacts, contributing to 62% of climate change and 75% of human toxicity. The recycling scenario reduced total impact by 23.1% (119 → 91.5 mPt), with significant declines in freshwater ecotoxicity (−28.6%) and marine eutrophication (−25.1%). Survey data highlighted critical gaps: low consumer participation in recycling due to lack of awareness and inadequate disposal infrastructure. Recycled polycarbonate can substantially mitigate environmental impacts, but systemic barriers (consumer behavior, collection gaps) limit progress. Future work should explore bio-based polymers and policy incentives to accelerate circularity.

Life Cycle Assessment of Swimming Goggles: Evaluating Environmental Impact and Consumer Awareness / V. Nikonova, V. Bortolotto, C. Bebber, I. Presti, G. Angelo Valtorta, S. Biella, C.L.M. Bianchi. - In: JOURNAL OF EXPERIMENTAL AND THEORETICAL ANALYSES. - ISSN 2813-4648. - 3:3(2025 Sep 11), pp. 27.1-27.19. [10.3390/jeta3030027]

Life Cycle Assessment of Swimming Goggles: Evaluating Environmental Impact and Consumer Awareness

V. Nikonova
Primo
Software
;
V. Bortolotto
Secondo
Formal Analysis
;
S. Biella
Penultimo
Validation
;
C.L.M. Bianchi
Ultimo
Supervision
2025

Abstract

This study evaluates the environmental impact of swimming goggles through a Life Cycle Assessment (LCA), comparing virgin and recycled polycarbonate models. It identifies key hotspots, assesses circular economy benefits, and examines barriers to sustainable disposal, aligning with European Union’s (EU) 2050 sustainability objectives. The LCA was modeled using SimaPro, with the Environmental Footprint (EF) 3.1 method to analyze 16 impact categories (e.g., climate change, human toxicity, resource depletion). Two scenarios were assessed: (1) virgin polycarbonate production and (2) a closed-loop system (80% recycled content, 30% reintegration). Primary data from a survey of 150 competitive swimmers quantified disposal behaviors. The lens production phase (bisphenol A processing) dominated impacts, contributing to 62% of climate change and 75% of human toxicity. The recycling scenario reduced total impact by 23.1% (119 → 91.5 mPt), with significant declines in freshwater ecotoxicity (−28.6%) and marine eutrophication (−25.1%). Survey data highlighted critical gaps: low consumer participation in recycling due to lack of awareness and inadequate disposal infrastructure. Recycled polycarbonate can substantially mitigate environmental impacts, but systemic barriers (consumer behavior, collection gaps) limit progress. Future work should explore bio-based polymers and policy incentives to accelerate circularity.
Life Cycle Assessment (LCA); sustainable sports equipment; polycarbonate recycling; circular economy; key emission source; global warming potential;
Settore CHEM-04/A - Chimica industriale
11-set-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
296_jeta_LCA 2025.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1183055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact