Prostate cancer poses a significant threat to men’s health, and timely detection is crucial for effective treatment [1]. Advances in artificial intelligence (AI) offer promising improvements in prostate cancer detection, potentially enhancing early detection rates, refining treatment strategies, and improving patient outcomes [2]. This study employed 5-fold cross-validation to train three models: an Attention-Res-U-Net, a Vanilla-Net, and a V-Net. Based on validation results, the best-performing average ensemble model was selected and tested using Intersection over Union (IoU) and Dice Similarity Coefficient (DSC) metrics.

Enhancing Prostate Cancer Detection with AI-Based Ensemble Models on T2-Weighted MRI Sequences / S. Fouladi, L. Di Palma, D. Fazzini, G. Gianini, A. Maiocchi, S. Papa, M. Alì. ((Intervento presentato al convegno EuSoMII Annual Meeting tenutosi a Pisa nel 2024.

Enhancing Prostate Cancer Detection with AI-Based Ensemble Models on T2-Weighted MRI Sequences

S. Fouladi
;
D. Fazzini;G. Gianini;
2024

Abstract

Prostate cancer poses a significant threat to men’s health, and timely detection is crucial for effective treatment [1]. Advances in artificial intelligence (AI) offer promising improvements in prostate cancer detection, potentially enhancing early detection rates, refining treatment strategies, and improving patient outcomes [2]. This study employed 5-fold cross-validation to train three models: an Attention-Res-U-Net, a Vanilla-Net, and a V-Net. Based on validation results, the best-performing average ensemble model was selected and tested using Intersection over Union (IoU) and Dice Similarity Coefficient (DSC) metrics.
12-ott-2024
Settore MEDS-22/A - Diagnostica per immagini e radioterapia
Enhancing Prostate Cancer Detection with AI-Based Ensemble Models on T2-Weighted MRI Sequences / S. Fouladi, L. Di Palma, D. Fazzini, G. Gianini, A. Maiocchi, S. Papa, M. Alì. ((Intervento presentato al convegno EuSoMII Annual Meeting tenutosi a Pisa nel 2024.
Conference Object
File in questo prodotto:
File Dimensione Formato  
EuSoMII2024_1.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 394.57 kB
Formato Adobe PDF
394.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1174355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact