In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MADNIS method in the MADGRAPH event generator. A series of improvements in MADNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.
The MadNIS reloaded / T. Heimel, N. Huetsch, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 17:1(2024 Jul 29), pp. 023.1-023.23. [10.21468/SciPostPhys.17.1.023]
The MadNIS reloaded
R. WinterhalderUltimo
2024
Abstract
In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MADNIS method in the MADGRAPH event generator. A series of improvements in MADNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
SciPostPhys_17_1_023.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
710.88 kB
Formato
Adobe PDF
|
710.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




