Differentiable programming opens exciting new avenues in particle physics, also affecting future event generators. These new techniques boost the performance of current and planned MadGraph implementations. Combining phase-space mappings with a set of very small learnable flow elements, MADNIS-Lite, can improve the sampling efficiency while being physically interpretable. This defines a third sampling strategy, complementing VEGAS and the full MADNIS.

Differentiable MadNIS-Lite / T. Heimel, O. Mattelaer, T. Plehn, R. Winterhalder. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 18:1(2025), pp. 017.1-017.30. [10.21468/SciPostPhys.18.1.017]

Differentiable MadNIS-Lite

R. Winterhalder
Ultimo
2025

Abstract

Differentiable programming opens exciting new avenues in particle physics, also affecting future event generators. These new techniques boost the performance of current and planned MadGraph implementations. Combining phase-space mappings with a set of very small learnable flow elements, MADNIS-Lite, can improve the sampling efficiency while being physically interpretable. This defines a third sampling strategy, complementing VEGAS and the full MADNIS.
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
2025
15-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_18_1_017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1173929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact