Subtracting event samples is a common task in LHC simulation and analysis, and standard solutions tend to be inefficient. We employ generative adversarial networks to produce new event samples with a phase space distribution corresponding to added or subtracted input samples. We first illustrate for a toy example how such a network beats the statistical limitations of the training data. We then show how such a network can be used to subtract background events or to include non-local collinear subtraction events at the level of unweighted 4-vector events.

How to GAN Event Subtraction / A. Butter, T. Plehn, R. Winterhalder. - In: SCIPOST PHYSICS CORE. - ISSN 2666-9366. - 3:2(2020 Dec), pp. 9.1-9.16. [10.21468/SciPostPhysCore.3.2.009]

How to GAN Event Subtraction

R. Winterhalder
Ultimo
2020

Abstract

Subtracting event samples is a common task in LHC simulation and analysis, and standard solutions tend to be inefficient. We employ generative adversarial networks to produce new event samples with a phase space distribution corresponding to added or subtracted input samples. We first illustrate for a toy example how such a network beats the statistical limitations of the training data. We then show how such a network can be used to subtract background events or to include non-local collinear subtraction events at the level of unweighted 4-vector events.
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
dic-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
SciPostPhysCore_3_2_009.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 575.65 kB
Formato Adobe PDF
575.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1173891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact