Neural networks for LHC physics have to be accurate, reliable, and controlled. Using surrogate loop amplitudes as a use case, we first show how activation functions can be systematically tested with KANs. For reliability and control, we learn uncertainties together with the target amplitude over phase space. Systematic uncertainties can be learned by a heteroscedastic loss, but a comprehensive learned uncertainty requires Bayesian networks or repulsive ensembles. We compute pull distributions to show to what level learned uncertainties are calibrated correctly for cutting-edge precision surrogates.

Accurate Surrogate Amplitudes with Calibrated Uncertainties / H. Bahl, N. Elmer, L. Favaro, M. Haußmann, T. Plehn, R. Winterhalder. - (2024 Dec 16).

Accurate Surrogate Amplitudes with Calibrated Uncertainties

R. Winterhalder
Ultimo
2024

Abstract

Neural networks for LHC physics have to be accurate, reliable, and controlled. Using surrogate loop amplitudes as a use case, we first show how activation functions can be systematically tested with KANs. For reliability and control, we learn uncertainties together with the target amplitude over phase space. Systematic uncertainties can be learned by a heteroscedastic loss, but a comprehensive learned uncertainty requires Bayesian networks or repulsive ensembles. We compute pull distributions to show to what level learned uncertainties are calibrated correctly for cutting-edge precision surrogates.
High Energy Physics - Phenomenology; High Energy Physics - Phenomenology
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
16-dic-2024
http://arxiv.org/abs/2412.12069v1
File in questo prodotto:
File Dimensione Formato  
2412.12069v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 929.1 kB
Formato Adobe PDF
929.1 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1173419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact