This study evaluated the effects of feedstuffs and additives in dairy cow rations on rumen methane production and nitrate content in groundwater. Two basal rations and their supplements were analyzed in regard to proximate parameters, and an in vitro rumen fermentation system assessed methane release and nitrate levels over 72 h. Supplementing dairy cow rations with Brassica rapa (BR) boosted the ether extract content, while silage produced the highest amount of methane. Rapidly degrading substrates like BR and ground maize produced methane faster, but in smaller amounts, than straw and silage. BR, Opuntia ficus-indica (OFI), and Posidonia oceanica (PO)-supplemented rations had mixed effects; PO reduced the methane yield, while OFI increased methane production rates. BR-supplemented rations had the lowest nitrate levels, making it suitable for anaerobic digestion. The multivariate analysis showed strong correlations between crude protein, dry matter, and ash, while high-nitrate substrates inhibited methane production, supporting the literature on the role of nitrates in reducing methanogenesis. These results emphasize the need to balance nutrient composition and methane mitigation strategies in dairy cow ration formulations.
The Modification of Dairy Cow Rations with Feed Additives Mitigates Methane Production and Reduces Nitrate Content During In Vitro Ruminal Fermentation / E. Attard, J. Buttigieg, K. Simeonidis, G. Pastorelli. - In: GASES. - ISSN 2673-5628. - 5:3(2025 Jun 23), pp. 12.1-12.16. [10.3390/gases5030012]
The Modification of Dairy Cow Rations with Feed Additives Mitigates Methane Production and Reduces Nitrate Content During In Vitro Ruminal Fermentation
K. SimeonidisPenultimo
;G. PastorelliUltimo
2025
Abstract
This study evaluated the effects of feedstuffs and additives in dairy cow rations on rumen methane production and nitrate content in groundwater. Two basal rations and their supplements were analyzed in regard to proximate parameters, and an in vitro rumen fermentation system assessed methane release and nitrate levels over 72 h. Supplementing dairy cow rations with Brassica rapa (BR) boosted the ether extract content, while silage produced the highest amount of methane. Rapidly degrading substrates like BR and ground maize produced methane faster, but in smaller amounts, than straw and silage. BR, Opuntia ficus-indica (OFI), and Posidonia oceanica (PO)-supplemented rations had mixed effects; PO reduced the methane yield, while OFI increased methane production rates. BR-supplemented rations had the lowest nitrate levels, making it suitable for anaerobic digestion. The multivariate analysis showed strong correlations between crude protein, dry matter, and ash, while high-nitrate substrates inhibited methane production, supporting the literature on the role of nitrates in reducing methanogenesis. These results emphasize the need to balance nutrient composition and methane mitigation strategies in dairy cow ration formulations.File | Dimensione | Formato | |
---|---|---|---|
gases-05-00012.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.