We construct new three-dimensional variants of the classical Diederich–Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.
On a higher dimensional worm domain and its geometric properties / S.G. Krantz, M.M. Peloso, C. Stoppato. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 111:6(2025), pp. e70195.1-e70195.38. [10.1112/jlms.70195]
On a higher dimensional worm domain and its geometric properties
M.M. PelosoPenultimo
;
2025
Abstract
We construct new three-dimensional variants of the classical Diederich–Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Journal of London Math Soc - 2025 - Krantz - On a higher dimensional worm domain and its geometric properties(1).pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
515.63 kB
Formato
Adobe PDF
|
515.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




