We construct new three-dimensional variants of the classical Diederich–Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.

On a higher dimensional worm domain and its geometric properties / S.G. Krantz, M.M. Peloso, C. Stoppato. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 111:6(2025), pp. e70195.1-e70195.38. [10.1112/jlms.70195]

On a higher dimensional worm domain and its geometric properties

M.M. Peloso
Penultimo
;
2025

Abstract

We construct new three-dimensional variants of the classical Diederich–Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.
Worm domains; Bergman projection; pseudo convexity;
Settore MATH-03/A - Analisi matematica
2025
8-giu-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Journal of London Math Soc - 2025 - Krantz - On a higher dimensional worm domain and its geometric properties(1).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 515.63 kB
Formato Adobe PDF
515.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1169995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 1
social impact