Single cell (sc) technologies mark a conceptual and methodological breakthrough in our way to study cells, the base units of life. Thanks to these technological developments, large-scale initiatives are currently ongoing aimed at mapping of all the cell types in the human body, with the ambitious aim to gain a cell-level resolution of physiological development and disease. Since its broad applicability and ease of interpretation scRNA-seq is probably the most common sc-based application. This assay uses high throughput RNA sequencing to capture gene expression profiles at the sc-level. Subsequently, under the assumption that differences in transcriptional programs correspond to distinct cellular identities, ad-hoc computational methods are used to infer cell types from gene expression patterns. A wide array of computational methods were developed for this task. However, depending on the underlying algorithmic approach and associated computational requirements, each method might have a specific range of application, with implications that are not always clear to the end user. Here we will provide a concise overview on state-of-the-art computational methods for cell identity annotation in scRNA-seq, tailored for new users and non-computational scientists. To this end, we classify existing tools in five main categories, and discuss their key strengths, limitations and range of application.
Mapping Cell Identity from scRNA-seq: A primer on computational methods / D. Traversa, M. Chiara. - In: COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. - ISSN 2001-0370. - 27:(2025), pp. 1559-1569. [10.1016/j.csbj.2025.03.051]
Mapping Cell Identity from scRNA-seq: A primer on computational methods
D. TraversaPrimo
Conceptualization
;M. Chiara
Ultimo
Writing – Review & Editing
2025
Abstract
Single cell (sc) technologies mark a conceptual and methodological breakthrough in our way to study cells, the base units of life. Thanks to these technological developments, large-scale initiatives are currently ongoing aimed at mapping of all the cell types in the human body, with the ambitious aim to gain a cell-level resolution of physiological development and disease. Since its broad applicability and ease of interpretation scRNA-seq is probably the most common sc-based application. This assay uses high throughput RNA sequencing to capture gene expression profiles at the sc-level. Subsequently, under the assumption that differences in transcriptional programs correspond to distinct cellular identities, ad-hoc computational methods are used to infer cell types from gene expression patterns. A wide array of computational methods were developed for this task. However, depending on the underlying algorithmic approach and associated computational requirements, each method might have a specific range of application, with implications that are not always clear to the end user. Here we will provide a concise overview on state-of-the-art computational methods for cell identity annotation in scRNA-seq, tailored for new users and non-computational scientists. To this end, we classify existing tools in five main categories, and discuss their key strengths, limitations and range of application.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S2001037025001199-main.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




