Magnetic nanoparticles offer the possibility of combining diagnostic and therapeutic purposes within a single nano-object. In this work, we explore two distinct sets of iron oxide-based nanospheres for their application as contrast agents in magnetic resonance imaging and as heating mediators in magnetic fluid hyperthermia. The nanoparticles were produced with the green microwave polyol-assisted method. The nanoparticles in the first set have a mean core diameter of 11 nm and are coated with polyacrylic acid (PAA), carboxymethyl-dextran (CM-D), or dimercaptosuccinic acid (DMSA). The second set has nanoparticles of a mean diameter of 14 nm, which are coated with PAA or CM-D. The longitudinal and transverse 1H-NMR nuclear relaxivities (r1,2) exhibit a field behavior that depends on the particle core size and on the coating. It is shown that the combination of size and coating is relevant to optimize the relaxometric efficiency, with the PAA coating being able to double the r2 efficiency for the smallest size. The heating release was evaluated under various combinations of external alternating magnetic fields, with frequency values ranging from 102.2 kHz to 971.2 kHz and amplitude values ranging from 7 mT to 40 mT. The results indicate that the heating efficiency is independent of the coating for both the 11 and 14 nm particles, while it is significantly higher for the samples of largest size. We conclude that the combination of size and coating (i.e., surface modifications) of the magnetic nanoparticles can play a crucial role in the relaxometric and heating properties of magnetic nanoparticles with core size of <15 nm.

Iron oxide nanospheres: dual functionality as MRI contrast agents and magnetic fluid hyperthermia therapeutics / M. Porru, F. Brero, C. Dìaz-Ufano, M. Mariani, F. Orsini, P. Arosio, M.D.P. Morales, A. Lascialfari. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - (2025), pp. 1-12. [Epub ahead of print] [10.1039/d5dt00609k]

Iron oxide nanospheres: dual functionality as MRI contrast agents and magnetic fluid hyperthermia therapeutics

F. Orsini;P. Arosio;
2025

Abstract

Magnetic nanoparticles offer the possibility of combining diagnostic and therapeutic purposes within a single nano-object. In this work, we explore two distinct sets of iron oxide-based nanospheres for their application as contrast agents in magnetic resonance imaging and as heating mediators in magnetic fluid hyperthermia. The nanoparticles were produced with the green microwave polyol-assisted method. The nanoparticles in the first set have a mean core diameter of 11 nm and are coated with polyacrylic acid (PAA), carboxymethyl-dextran (CM-D), or dimercaptosuccinic acid (DMSA). The second set has nanoparticles of a mean diameter of 14 nm, which are coated with PAA or CM-D. The longitudinal and transverse 1H-NMR nuclear relaxivities (r1,2) exhibit a field behavior that depends on the particle core size and on the coating. It is shown that the combination of size and coating is relevant to optimize the relaxometric efficiency, with the PAA coating being able to double the r2 efficiency for the smallest size. The heating release was evaluated under various combinations of external alternating magnetic fields, with frequency values ranging from 102.2 kHz to 971.2 kHz and amplitude values ranging from 7 mT to 40 mT. The results indicate that the heating efficiency is independent of the coating for both the 11 and 14 nm particles, while it is significantly higher for the samples of largest size. We conclude that the combination of size and coating (i.e., surface modifications) of the magnetic nanoparticles can play a crucial role in the relaxometric and heating properties of magnetic nanoparticles with core size of <15 nm.
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
   Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation
   NESTOR
   European Commission
   Horizon 2020 Framework Programme
   101007629

   IMAGINE
   European Commission
   ERASMUS+
   2016-1-HR01-KA219-022165
2025
16-mag-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
75_nanospheres_Dalton_2025.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1165778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact