We study the well-posedness of a nonlinear reaction diffusion partial differential equation system on the half-line coupled with a stochastic dynamical boundary condition, a random system arising from the description of the chemical reaction of sulphur dioxide with calcium carbonate stones. The boundary condition is given by a Jacobi process, solution to a stochastic differential equation with a mean-reverting drift and a bounded diffusion coefficient. The main result is the global existence and the pathwise uniqueness of mild solutions. The proof relies on a splitting strategy, which allows to deal with the low regularity of the dynamical boundary condition.

Well-posedness of a reaction–diffusion model with stochastic dynamical boundary conditions / M. Maurelli, D. Morale, S. Ugolini. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 186:(2025 Aug), pp. 104646.1-104646.23. [10.1016/j.spa.2025.104646]

Well-posedness of a reaction–diffusion model with stochastic dynamical boundary conditions

M. Maurelli
Primo
;
D. Morale
Secondo
;
S. Ugolini
Ultimo
2025

Abstract

We study the well-posedness of a nonlinear reaction diffusion partial differential equation system on the half-line coupled with a stochastic dynamical boundary condition, a random system arising from the description of the chemical reaction of sulphur dioxide with calcium carbonate stones. The boundary condition is given by a Jacobi process, solution to a stochastic differential equation with a mean-reverting drift and a bounded diffusion coefficient. The main result is the global existence and the pathwise uniqueness of mild solutions. The proof relies on a splitting strategy, which allows to deal with the low regularity of the dynamical boundary condition.
Stochastic dynamical boundary conditions; Nonlinear reaction–diffusion PDEs; Application to sulphation
Settore MATH-03/B - Probabilità e statistica matematica
   Piano Sviluppo Unimi - Linea 3 - Bando SOE 2020 - Progetto SciCult
   SciCult
   UNIVERSITA' DEGLI STUDI DI MILANO
ago-2025
apr-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
SPA_Maurelli_Morale_Ugolini.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 438.68 kB
Formato Adobe PDF
438.68 kB Adobe PDF Visualizza/Apri
1-s2.0-S0304414925000870-main.pdf

accesso riservato

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1158435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact