Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.

Past and ongoing adaptation of human cytomegalovirus to its host / A. Mozzi, M. Biolatti, R. Cagliani, D. Forni, V. Dell'Oste, C. Pontremoli, C. Vantaggiato, U. Pozzoli, M. Clerici, S. Landolfo, M. Sironi. - In: PLOS PATHOGENS. - ISSN 1553-7374. - 16:5(2020 May 08), pp. e1008476.1-e1008476.33. [10.1371/journal.ppat.1008476]

Past and ongoing adaptation of human cytomegalovirus to its host

R. Cagliani;D. Forni;C. Pontremoli;M. Clerici;M. Sironi
Ultimo
2020

Abstract

Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.
Settore MEDS-02/A - Patologia generale
Settore BIOS-10/A - Biologia cellulare e applicata
8-mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
file(3).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1157235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact