The two main approaches to quantum computing are gate-based computation and analog computation, which are polynomially equivalent in terms of complexity, and they are often seen as alternatives to each other. In this work, we present a method for fitting one-dimensional probability distributions as a practical example of how analog and gate-based computation can be used together to perform different tasks within a single algorithm. In particular, we propose a strategy for encoding data within an adiabatic evolution model, which accommodates the fitting of strictly monotonic functions, as it is the cumulative distribution function of a dataset. Subsequently, we use a Trotter-bounded procedure to translate the adiabatic evolution into a quantum circuit in which the evolution time t is identified with the parameters of the circuit. This facilitates computing the probability density as derivative of the cumulative function using parameter shift rules.
Determining probability density functions with adiabatic quantum computing / M. Robbiati, J.M. Cruz-Martinez, S. Carrazza. - In: QUANTUM MACHINE INTELLIGENCE. - ISSN 2524-4906. - 7:1(2024), pp. 1-11. [10.1007/s42484-024-00228-2]
Determining probability density functions with adiabatic quantum computing
M. Robbiati
Primo
;S. CarrazzaUltimo
2024
Abstract
The two main approaches to quantum computing are gate-based computation and analog computation, which are polynomially equivalent in terms of complexity, and they are often seen as alternatives to each other. In this work, we present a method for fitting one-dimensional probability distributions as a practical example of how analog and gate-based computation can be used together to perform different tasks within a single algorithm. In particular, we propose a strategy for encoding data within an adiabatic evolution model, which accommodates the fitting of strictly monotonic functions, as it is the cumulative distribution function of a dataset. Subsequently, we use a Trotter-bounded procedure to translate the adiabatic evolution into a quantum circuit in which the evolution time t is identified with the parameters of the circuit. This facilitates computing the probability density as derivative of the cumulative function using parameter shift rules.File | Dimensione | Formato | |
---|---|---|---|
s42484-024-00228-2.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.