This paper presents CliffPhys, a family of models that leverage hypercomplex neural architectures for camera-based respiratory measurement. The proposed approach extracts respiratory motion from standard RGB cameras, relying on optical flow and monocular depth estimation to obtain a 2D vector field and a scalar field, respectively. We show how the adoption of Clifford Neural Layers to model the geometric relationships within the recovered input fields allows respiratory information to be effectively estimated. Experimental results on three publicly available datasets demonstrate CliffPhys’ superior performance compared to both baselines and recent neural approaches, achieving state-of-the-art results in the prediction of respiratory rates. Source code available at: https://github.com/phuselab/CliffPhys.

CliffPhys: Camera-Based Respiratory Measurement Using Clifford Neural Networks / O. Ghezzi, G. Boccignone, G. Grossi, R. Lanzarotti, A. D'Amelio (LECTURE NOTES IN COMPUTER SCIENCE). - In: Computer Vision – ECCV 2024 / [a cura di] Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G.. - Cham : Springer, 2025. - ISBN 978-3-031-73012-2. - pp. 221-238 (( Intervento presentato al 18. convegno European Conference on Computer Vision, ECCV tenutosi a Milano nel 2024 [10.1007/978-3-031-73013-9_13].

CliffPhys: Camera-Based Respiratory Measurement Using Clifford Neural Networks

G. Boccignone
Secondo
;
G. Grossi;R. Lanzarotti
Penultimo
;
A. D'Amelio
Ultimo
2025

Abstract

This paper presents CliffPhys, a family of models that leverage hypercomplex neural architectures for camera-based respiratory measurement. The proposed approach extracts respiratory motion from standard RGB cameras, relying on optical flow and monocular depth estimation to obtain a 2D vector field and a scalar field, respectively. We show how the adoption of Clifford Neural Layers to model the geometric relationships within the recovered input fields allows respiratory information to be effectively estimated. Experimental results on three publicly available datasets demonstrate CliffPhys’ superior performance compared to both baselines and recent neural approaches, achieving state-of-the-art results in the prediction of respiratory rates. Source code available at: https://github.com/phuselab/CliffPhys.
Clifford Neural Layers; Contactless Respiration Monitoring; Remote Physiological Measurement; Vital Signs Monitoring
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
2025
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
11393.pdf

accesso aperto

Descrizione: Conference Paper
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri
978-3-031-73013-9_13.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1125560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 4
social impact