This paper presents CliffPhys, a family of models that leverage hypercomplex neural architectures for camera-based respiratory measurement. The proposed approach extracts respiratory motion from standard RGB cameras, relying on optical flow and monocular depth estimation to obtain a 2D vector field and a scalar field, respectively. We show how the adoption of Clifford Neural Layers to model the geometric relationships within the recovered input fields allows respiratory information to be effectively estimated. Experimental results on three publicly available datasets demonstrate CliffPhys’ superior performance compared to both baselines and recent neural approaches, achieving state-of-the-art results in the prediction of respiratory rates. Source code available at: https://github.com/phuselab/CliffPhys.
CliffPhys: Camera-Based Respiratory Measurement Using Clifford Neural Networks / O. Ghezzi, G. Boccignone, G. Grossi, R. Lanzarotti, A. D'Amelio (LECTURE NOTES IN COMPUTER SCIENCE). - In: Computer Vision – ECCV 2024 / [a cura di] Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G.. - Cham : Springer, 2025. - ISBN 978-3-031-73012-2. - pp. 221-238 (( Intervento presentato al 18. convegno European Conference on Computer Vision, ECCV tenutosi a Milano nel 2024 [10.1007/978-3-031-73013-9_13].
CliffPhys: Camera-Based Respiratory Measurement Using Clifford Neural Networks
G. BoccignoneSecondo
;G. Grossi;R. LanzarottiPenultimo
;A. D'AmelioUltimo
2025
Abstract
This paper presents CliffPhys, a family of models that leverage hypercomplex neural architectures for camera-based respiratory measurement. The proposed approach extracts respiratory motion from standard RGB cameras, relying on optical flow and monocular depth estimation to obtain a 2D vector field and a scalar field, respectively. We show how the adoption of Clifford Neural Layers to model the geometric relationships within the recovered input fields allows respiratory information to be effectively estimated. Experimental results on three publicly available datasets demonstrate CliffPhys’ superior performance compared to both baselines and recent neural approaches, achieving state-of-the-art results in the prediction of respiratory rates. Source code available at: https://github.com/phuselab/CliffPhys.| File | Dimensione | Formato | |
|---|---|---|---|
|
11393.pdf
accesso aperto
Descrizione: Conference Paper
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
|
978-3-031-73013-9_13.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




