Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained. Existing approaches mostly focus on i) implementing solutions for classifier selection according to the functional behavior of ML models, ii) finding new algorithmic solutions, such as continuous re-training. In this paper, we propose a multi-model approach that aims to guarantee a stable non-functional behavior of ML-based applications. An architectural and methodological approach is provided to compare multiple ML models showing similar non-functional properties and select the model supporting stable non-functional behavior over time according to (dynamic and unpredictable) contextual changes. Our approach goes beyond the state of the art by providing a solution that continuously guarantees a stable non-functional behavior of ML-based applications, is ML algorithm-agnostic, and is driven by non-functional properties assessed on the ML models themselves. It consists of a two-step process working during application operation, where model assessment verifies non-functional properties of ML models trained and selected at development time, and model substitution guarantees continuous and stable support of non-functional properties. We experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.

Continuous Management of Machine Learning-Based Application Behavior / M. Anisetti, C.A. Ardagna, N. Bena, E. Damiani, P.G. Panero. - In: IEEE TRANSACTIONS ON SERVICES COMPUTING. - ISSN 1939-1374. - (2024), pp. 1-14. [Epub ahead of print] [10.1109/tsc.2024.3486226]

Continuous Management of Machine Learning-Based Application Behavior

M. Anisetti
Primo
;
C.A. Ardagna
Secondo
;
N. Bena;E. Damiani
Penultimo
;
2024

Abstract

Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained. Existing approaches mostly focus on i) implementing solutions for classifier selection according to the functional behavior of ML models, ii) finding new algorithmic solutions, such as continuous re-training. In this paper, we propose a multi-model approach that aims to guarantee a stable non-functional behavior of ML-based applications. An architectural and methodological approach is provided to compare multiple ML models showing similar non-functional properties and select the model supporting stable non-functional behavior over time according to (dynamic and unpredictable) contextual changes. Our approach goes beyond the state of the art by providing a solution that continuously guarantees a stable non-functional behavior of ML-based applications, is ML algorithm-agnostic, and is driven by non-functional properties assessed on the ML models themselves. It consists of a two-step process working during application operation, where model assessment verifies non-functional properties of ML models trained and selected at development time, and model substitution guarantees continuous and stable support of non-functional properties. We experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.
Assurance; Machine Learning; Multi-Armed Bandit; Non-Functional Properties
Settore INFO-01/A - Informatica
   BA-PHERD: Big Data Analytics Pipeline for the Identification of Heterogeneous Extracellular non-coding RNAs as Disease Biomarkers
   BA-PHERD
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022XABBMA_002

   MUSA - Multilayered Urban Sustainability Actiona
   MUSA
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA

   SEcurity and RIghts in the CyberSpace (SERICS)
   SERICS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   codice identificativo PE00000014

   One Health Action Hub: task force di Ateneo per la resilienza di ecosistemi territoriali (1H_Hub) - ONE HEALTH ACTION HUB
   (1H_Hub) - ONE HEALTH ACTION HUB
   UNIVERSITA' DEGLI STUDI DI MILANO

   Sovereign Edge-Hub: un’architettura cloud-edge per la sovranità digitale nelle scienze della vita - SOV-EDGE-HUB
   SOV-EDGE-HUB
   UNIVERSITA' DEGLI STUDI DI MILANO
2024
28-ott-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Continuous_Management_of_Machine_Learning-Based_Application_Behavior.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1118989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact