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Abstract—Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is
affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that
guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional
properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained.
Existing approaches mostly focus on i) implementing solutions for classifier selection according to the functional behavior of ML
models, ii) finding new algorithmic solutions, such as continuous re-training. In this paper, we propose a multi-model approach that
aims to guarantee a stable non-functional behavior of ML-based applications. An architectural and methodological approach is
provided to compare multiple ML models showing similar non-functional properties and select the model supporting stable
non-functional behavior over time according to (dynamic and unpredictable) contextual changes. Our approach goes beyond the state
of the art by providing a solution that continuously guarantees a stable non-functional behavior of ML-based applications, is ML
algorithm-agnostic, and is driven by non-functional properties assessed on the ML models themselves. It consists of a two-step
process working during application operation, where model assessment verifies non-functional properties of ML models trained and
selected at development time, and model substitution guarantees continuous and stable support of non-functional properties. We
experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.

Index Terms—Assurance, Machine Learning, Multi-Armed Bandit, Non-Functional Properties

✦

1 INTRODUCTION

Machine Learning (ML) has become the technique of choice
to provide advanced functionalities and carry out tasks
hardly achievable by traditional control and optimization
algorithms [1]. Even the behavior, orchestration, and de-
ployment parameters of distributed systems and services,
possibly offered on the cloud-edge continuum, are increas-
ingly based on ML models [2]. Concerns about the black-box
nature of ML have led to a societal push that involves all
components of society (policymakers, regulators, academic
and industrial stakeholders, citizens) towards trustworthy
and transparent ML, giving rise to legislative initiatives on
artificial intelligence (e.g., the AI Act in Europe [3]).

This scenario introduces the need for solutions that
continuously guarantee a stable non-functional behavior
of ML-based applications, a task that is significantly more
complex than mere QoS-based selection and composition
(e.g., [4], [5], [6]). The focus of such a task is to assess the
non-functional properties of ML models, such as privacy,
confidentiality, fairness, and explainability, over time and
across changes. The non-functional assessment of ML-based
applications behavior has to cope with the ML models’
complexity, low transparency, and continuous evolution [7],
[8]. ML models in fact are affected by model and data
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drifts, quality degradation, and accuracy loss, which may
substantially impact on the quality and soundness of the
application itself.

Recent research points to solutions where ML models
evolve according to contextual changes (e.g., a shift in the in-
coming data distribution), typically via continuous re-train-
ing and peculiar training algorithms and ML models [9],
[10], [11]. Other solutions consider classifier selection where
a (set of) ML model is statically or dynamically selected
according to some criteria [12], [13], [14], [15]; in this context,
dynamic selection identifies the most suitable ML model for
each data point at inference time. Ensembles have been also
considered to increase ML robustness [16], [17], [18], [19],
[20]. Finally, some solutions have initially discussed certifi-
cation-based assessment of ML-based applications [7], [8],
[21]. Current approaches however fall short in supporting
the requirements of modern ML-based applications. On the
one hand, they disregard stable application behavior and
non-functional properties, which are increasingly mandated
by law, in favor of accuracy maximization. On the other
hand, they do not provide a general solution that applies
to any non-functional properties and ML algorithms, and
rather focus on specific, though relevant, properties (e.g.,
fairness) and algorithms (e.g., decision trees).

This paper fills in the above gaps by defining a multi-
model approach that guarantees a stable non-functional
behavior of ML-based applications. Similarly to dynamic
classifier selection, our approach keeps a pool of ML models
and one ML model at time is dynamically selected during
inference according to a (set of) non-functional property; the
selected ML model is replaced only when its non-functional
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property degrades. Our approach is particularly suited for
constrained and critical scenarios with (dynamic and un-
predictable) contextual changes. In such scenarios online
re-training and dynamic classifier/ensemble selection ap-
proaches i) have a larger overhead due to the expensive
training and the need to select a model for each data point,
and ii) can lead to unexpected application behavior due to
the arrival of new, unpredictable input data.

Our multi-model approach is built on a two-step process
working during application operation as follows. The first
step, model assessment, verifies non-functional properties of
ML models already trained and selected at development
time. To this aim, we extend our previous work on Multi-
Armed Bandit (MAB) [22], towards a dynamic MAB that
assesses non-functional properties of ML models at run
time. The second step, model substitution, is driven by the
properties assessed at step i), and guarantees a stable sup-
port for non-functional properties over time and across
changes. Our approach can be used both as a complete
solution for application behavior management (from design
to operation), or to complement existing ML-based applica-
tions with a multi-model substitution approach.

Our contribution is threefold. We first propose a new
definition of non-functional property of ML models. Our
definition departs from traditional, attribute-based proper-
ties available in the literature (e.g., [23], [24]), and includes
a scoring function at the basis of ML models comparison
and selection. We extend the scope of traditional proper-
ties, which are mostly based on accuracy [12] or metrics
unrelated to the model itself (e.g., the battery level of the
device or latency [25]), to include non-functional proper-
ties such as fairness and integrity, often mandated by law.
Though important, these properties are often neglected in
literature [26]. We then describe our multi-model approach
for managing the non-functional behavior of ML-based ap-
plications. Our approach defines a dynamic MAB for the
assessment of the non-functional properties of ML models,
and proposes two model substitution strategies built on it.
The two strategies support the dynamic choice of the model
with the best set of non-functional properties at run time,
by ranking and substituting the models in a dynamically
sized evaluation window, and performing additional early
substitutions upon severe non-functional degradation using
an assurance-based evaluation. We note that, although a
plethora of assurance techniques exist for the verification
of non-functional properties in traditional service-based
applications [23], [27], [28], [29], the definition of rigorous
assurance-based processes for ML-based applications is still
more an art than a science [7], [8]. We finally extensively
evaluate our solution focusing on non-functional property
fairness.

The remainder of this paper is organized as follows.
Section 2 presents our reference scenario and our approach
at a glance. Section 3 describes our building blocks, includ-
ing Static MAB that is later extended in Section 4 towards
Dynamic MAB for non-functional ML model assessment.
Section 5 presents the two strategies for model substitution.
Section 6 describes our approach in an end-to-end walk-
through. Section 7 presents an extensive experimental eval-
uation in a real scenario. Section 8 comparatively discusses
the related work and Section 9 draws our conclusions.

2 OUR APPROACH AT A GLANCE

We consider a scenario where a service provider is willing
to deploy an application (service workflow) whose behavior
depends on an ML model. The service provider needs to
maintain stable performance across time in terms of quality
(e.g., accuracy of the model) and non-functional posture
(e.g., fairness). Let us assume a scenario where the model
behavior changes, such as model drift (e.g., due to online
partial or full re-training) or data drift (e.g., service re-
deployment or migration in the cloud-edge continuum),
which are induced by modifications in the application op-
erational conditions. To cope with this scenario, the service
provider adopts a multi-model approach by designing and
deploying multiple models that can be alternatively used
depending on the context. This multi-model deployment
can impact single or multiple nodes in cloud or cloud-edge
scenarios. We note that the model behavior is evaluated
at design time and continuously monitored at run time to
decide which model to use during application operation. We
also note that the service provider can decide to substitute
or not the model in operation due to restrictions in the ap-
plication environment, but is always capable of comparing
the behavior of the model in use with the other alternative
models and use this evidence to fine-tune them offline.

Figure 1 shows an overview of the above scenario
and how we apply our multi-model approach to address
the continuous management of ML-based application non-
functional behavior.

Our approach starts at development time with a set
of pre-trained, candidate ML models and statically selects
the model with the best (set of) non-functional property
to be used by the application. At run time, two processes,
namely, model assessment and model substitution, continu-
ously monitor the non-functional property(ies) of all models
and apply model substitution when necessary to maintain
stable application behavior. The two processes work in an
evaluation window.

Let cl denote the set of candidate models {m0, . . . , mk}
and m̂ the model currently in use. Process model assessment
(Section 4) evaluates models in cl according to the given
non-functional property p. It implements a Dynamic Multi-
Armed Bandit (Dynamic MAB) approach, which extends our
previous work built on traditional MAB [22] to continuously
evaluate the models.

Process model substitution (Section 5) takes as input the
results of process model assessment and selects the best
model m̂ to be used within the application according to
two strategies. The first strategy compares models in cl
using the Dynamic MAB in the entire evaluation window,
producing a model ranking. The best model in the ranking
is then selected as the new m̂ to be used by the application
in the following evaluation window. The second strategy
extends the first one by implementing early substitutions of m̂
according to metric assurance level al, measuring the model
degradation. Early substitutions anticipate the replacement
of m̂, addressing transient changes before the end of the
evaluation window.

Example 1 (Reference Scenario). Our reference scenario con-
siders an ML-based application that supports authorities
(i.e., courts) in estimating the bail of an individual in
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Fig. 1. Overview of our approach.

prison. The application trains 5 models cl={m1, . . . , m5}
in the cloud on the same dataset, containing data on past
bails at national level. Each court is then provided with a
model. Let us assume that the selected model is m3 (i.e.,
m̂=m3). Due to the nature of the task, the non-functional
property of interest is fairness, in terms of variance over
some protected attributes [22].
Let us assume that, at run time, m̂ shows significant bi-
ases in the presence of underrepresented/disadvantaged
groups, thus affecting predicted bails. The overall fair-
ness of m̂ must be evaluated and compared to the other
candidate models, and a model substitution triggered
when needed to maintain stable non-functional behavior.

Our reference scenario exemplifies the four main chal-
lenges of modern ML applications: i) the definition of ad-
vanced non-functional properties that are typical of ML such
as fairness and privacy; ii) the assessment and comparison
of models in terms of a given non-functional property;
iii) the detection of an application’s non-functional property
degradation at run time; iv) the automatic substitution of
models to keep the application behavior stable with respect
to their non-functional properties. Existing solutions in lit-
erature cannot tackle these challenges in their entirety. For
instance, QoS-aware service selection approaches (e.g., [4],
[5], [30]) maximize specific (non-)functional metrics to build
an optimum composition or retrieve the most suitable
models. Similarly, classifier selection approaches (e.g., [12],
[13], [14], [15]) maximize quality metrics such as accuracy,
continuously swapping the models and potentially intro-
ducing fluctuations in the non-functional behavior. Other
approaches target non-AI systems (e.g., [31]), or do not gen-
eralize over the ML algorithms or non-functional properties
(e.g., [10], [11], [32], [33], [34]). To the best of our knowl-
edge, our multi-model approach is the first solution that
guarantees stable application non-functional behavior over time
and is generic with respect to the ML algorithm and property.
A detailed comparison of the approach in this paper with
solutions in literature is provided in Section 8.

3 BUILDING BLOCKS

Our multi-model approach is based on three main building
blocks: i) execution traces (Section 3.1), ii) non-functional prop-

TABLE 1
Terminology.

Symbol Description

m ML model
cl Set of candidate ML models
m̂ Selected ML model
ett t-th execution trace
p Non-functional property
p.p̂ Non-functional property name
p.S Non-functional property score function
m∗ ML model providing the highest reward according to the

MAB
w Variable-sized sequence of observed execution traces

(window)
Betam,j Beta distribution of model m in window wj

αm,j and βm,j Parameters of Betam,j

vm(θ) Reward retrieved from Betam,j

residualr Threshold of residual value in the MAB for closing the
window w

δ Memory to re-initialize Betam,j in a new window w
rmm,t Value of ranking metric rm of m at the t-th execution

trace
alt Assurance level of m̂ at the t-th execution trace
degt Degradation of the assurance level of m̂ up to the t-th

execution trace
thr Threshold of assurance level degradation triggering early

substitution

erties (Section 3.2), and iii) Multi-Armed Bandit (Section 3.3).
Table 1 shows the terminology used in this paper.

3.1 Execution Traces
Execution traces capture the behavior of a given ML model
at run time. They can be defined as follows.
Definition 1 (Execution Trace). An execution trace et is a

tuple of the form ⟨dp, pred⟩ where i) dp is the data point
(i.e., a set of features) given as input to a model, ii) pred
is the predicted result.

We note that dp can also contain the raw samples given
as input to a deep learning model. Execution traces can be
captured, for instance, by intercepting calls to the ML-based
application or through monitoring [35].
Example 2 (Execution Trace). Following Example 1, let us

consider an execution trace et=⟨[age=27, gender=male,
race=latino, past-offence=0, . . . ], $10K⟩, retrieved by
monitoring model m̂, where: [age=27, . . . , ] is the data
point sent to m̂ and $10K is the predicted bail.

3.2 Non-Functional Properties
Traditional non-functional properties are defined as an ab-
stract property (i.e., the property name) refined by a set
of attributes [23]. Common properties include performance,
confidentiality, integrity, availability [36]. When an ML model
is considered, the notion of property is redesigned [7] as
follows.
Definition 2 (Non-Functional Property). A non-functional

property p is a pair p=(p̂ ,S ), where p̂ is an abstract
property taken from a shared controlled vocabulary [22]
and S is a score function of the form S : {et}→R quan-
titatively describing how much an ML model supports p̂
according to its execution traces.

In the following, we use the dotted notation to refer to
the components of p (e.g., p .S ).
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Fig. 2. Partial view of the ML property taxonomy [22].

Example 3 (Non-Functional Property). Following Ex-
ample 2, property fairness can be defined as
pfairness=(fairness, variance-over-gender-race), where the
score function i) generates a number of synthetic data
points dp covering all the possible combinations of pro-
tected attributes gender and race; ii) sends each dp to
the model; and iii) measures the variance σ2 over the
predicted bails. We note that the higher the variance, the
lower the support for property fairness.

Non-functional properties of ML can be peculiar prop-
erties purposefully defined for ML evaluation (e.g., adver-
sarial robustness [21]) or a new interpretation of traditional
ones (e.g., model prediction integrity) [7]. Figure 2 shows
a portion of our taxonomy of non-functional properties,
which has been fully presented in our previous work [22].
The taxonomy includes generic properties, which are then
refined by detailed properties. For example, transparency
is a generic property with two sub-properties: i) explain-
ability, the capability to explain the model, on one hand,
and individual decisions taken by the model, on the other
hand; and ii) interpretability, the capability to predict the
consequences on a model when changes are observed. As
another example, fairness is a generic property with multiple
sub-properties. For each detailed property, different score
functions can be defined. For instance, Figure 2 shows two
score functions for property individual fairness: variance σ
(used in this paper) and Shapley [37]. Score functions in the
taxonomy are general, though we note that they need to
be refined and instantiated in the context of an evaluation
process for a specific ML-based application.

3.3 The MAB

We use the Multi-Armed Bandit (MAB) technique [22] to
compare models according to a non-functional property p
on a set of execution traces. MAB repeatedly executes an
experiment, whose goal is to get the highest reward that can
be earned by executing a specific action chosen among a set
of alternatives. Every action returns a reward or a penalty
with different (and unknown) probabilities. The experiment
is commonly associated with the problem of a gambler
facing different slot machines (or a single slot machine with
many arms retrieving different results). In our scenario, the

actions are the models mi in the candidate list cl and the
reward is based on the score function p .S in Definition 2.
Definition 3 (MAB). Let cl be the set of candidate models

{m1, . . . , mk}, each associated with an unknown reward
vm for non-functional property p . The goal of the MAB
is to select the model m∗ providing the highest reward
in a set of experiments (i.e., a set of execution traces).
A probability distribution fm(y | θ) drives experiments’
rewards, with y the observed reward and θ a collection
of unknown parameters that must be learned through
experimentation. MAB is based on Bayesian inference
considering that, in each experiment, the success/failure
odd of each model is unknown and can be shaped with
the probability distribution Beta distribution. Let m be
a model, its Beta distribution Betam is based on two
parameters α, β∈[0, 1] (denoted as αm and βm, resp.)
and its probability density function can be represented
as

Betam(x;αm, βm) =
x(αm−1)(1− x)βm−1

B(αm, βm)
(1)

where the normalization function B is the Euler beta
function

B(αm, βm) =

∫ 1

0
xαm−1(1− x)βm−1dx (2)

Thompson sampling [38] pulls models in cl, as a new
trace et is received from the application, by sampling
the models’ Beta distribution. The model with the high-
est sampled reward (denoted as m∗) is then evaluated
according to p .S and et. A comparison of the score func-
tion output against a threshold determines the success
or failure of this evaluation. Betam∗ is then updated
accordingly, such that m∗ is pulled more frequently in
case of successful evaluation (αm∗ increased by 1), less
frequently (βm∗ increased by 1), otherwise.
Let yt denote the set of observations recorded up to the t-
th execution trace ett. The optimal model m∗ is selected
according to probability winnerm,t:

winnerm,t = P (m∗ | yt) =

=

∫
l(m∗ = argmax

m∈cl
vm(θ))p(θ | yt)dt

(3)
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where l is the indicator function and p(θ|yt) is the
Bayesian posterior probability distribution of θ given the
observations up to the t-th execution trace. The MAB
terminates when all experiments end, that is, all traces
have been received.

The optimal model m∗ is used by the application (i.e.,
m̂=m∗) [22]. We note that, while effective at application
startup, the MAB cannot be continuously applied at run
time as new traces come. For this reason, the MAB in this
section (Static MAB in the following) is only used for static
model selection at development time. We then define in
Section 4 a Dynamic MAB as the extension of the Static MAB
for run-time model selection and substitution.

4 MODEL ASSESSMENT: DYNAMIC MAB
Process model assessment compares ML models at run
time according to their non-functional behavior. It takes
as input the models in the candidate list cl and the non-
functional property p, and returns as output the models’
Beta distributions. Models assessment uses the Static MAB
within an evaluation window w of |w| execution traces, and
then shifts the window of |w| execution traces instantiating
a new Static MAB.

The window size |w| can be fixed or variable. When
w has fixed size |w|, the Dynamic MAB may not reach a
statistical relevance to take a decision; in this case, i) the
outcome can be sub-optimal or ii) the evaluation can be
extended to the next window.

When w has variable size |w|, our default approach,
the MAB terminates the evaluation and moves to the next
window only when a statistically relevant decision can be
made. It is based on the value remaining in the experiment [39],
a tunable strategy that controls both the estimation error and
the window size requested to reach a valuable decision. In
the following, we present our solutions based on variable
window sizes, namely Dynamic MAB with Variable Win-
dow (DMVW) and DMVW with Memory (DMVW-Mem).

4.1 Dynamic MAB with Variable Window (DMVW)
The Dynamic MAB with Variable Window (DMVW) imple-
ments the value remaining in the experiment using a Monte
Carlo simulation. The simulation considers a random set g
of sampled draws from models’ Beta distributions. It then
counts the frequency of each model being the winner in g as
an estimation of the corresponding probability distribution.

The value remaining in the experiment is based on the
minimization of the “regret” (the missed reward) due to
an early terminated experiment. Let θ0 denote the value
of θ and m∗=argmaxm∈cl vm(θ0) the optimal model at
the end of a window w. The regret due to early termina-
tion of an experiment within window w is represented by
vm∗(θ0)−vm∗,t(θ0), which is the difference between i) the
reward vm∗(θ0) of the optimal model m∗ retrieved at the
end of window w and ii) the reward vm∗,t(θ0) of the optimal
model m∗,t retrieved at execution trace ett.

Considering that the regret is not directly observ-
able, it can be computed using the posterior probabil-
ity distribution. Let us consider v∗(θ(g))=maxm∈cl vm(θ(g))
where θ(g) is drawn from p(θ|yt). The “regret” r in g

is r(g)=v∗(θ
(g))−vm∗,t(θ0), which derives from the regret

posterior probability distribution. We note that v∗(θ
(g)) is

the maximum available value within each Monte Carlo
draw set g and vm∗,t(θ(g)) is the value (alike taken in g) for
the best arm within each Monte Carlo simulation. Regret is
expressed as the percentage of the deviation from the model
identified as the winner, so that draws from the posterior
probability are given as follows.

r(g) =
v∗(θ

(g))− vm∗,t(θ(g))

vm∗,t(θ(g))
(4)

The experiment completes when 95% of the sam-
ples of a simulation have a residual value less than
a given percentage (residualr) of the value of the best
model vm∗,t(θ0). Formally, a window can be closed when
percentile(r(g), 95)≤vm∗,t(θ0)×residualr . A common value
for residualr is 1%; it can be increased to reduce the window
size, while leading to a greater residual. We note that the
window size can be tuned in terms of the acceptable regret
using residualr.

In a nutshell, DMVW takes a decision based on the
execution traces in a specific window w only. A new MAB is
executed from scratch in each window, potentially leading
to a discontinuous model comparison. Due to this effect,
DMVW can produce fluctuations in the selection of the
optimal model m∗ to be used by the application. To address
these issues, we extend the DMVW with the notion of
memory in Section 4.2.

4.2 DMVW with Memory (DMVW-Mem)
The DMVW with memory (DMVW-Mem) keeps track of past
DMVW executions to smooth the discontinuity among con-
secutive windows. DMVW-Mem for window wj is defined
on the basis of the Beta distributions and corresponding
parameters in window wj−1 as follows.
Definition 4 (DMVW with memory (DMVW-Mem)). A

DMVW-Mem is a DMVW where the Beta distribution
Betam,j of each model m in window wj is initialized
on the basis of the Beta distribution Betam,j−1 of the
corresponding model m in window wj−1, as follows:

• αm,j=αm,j−1 × δ
• βm,j=βm,j−1 × δ,
where δ∈[0, 1] denotes the memory size, αm,j−1 and
βm,j−1 are α and β of Beta distribution Betam,j−1 of
model m in window wj−1. We note that the resulting
αm,j and βm,j are rounded down and set to 1 when
equal to 0.

DMVW-Mem initializes the Beta distributions in each
window wj according to the Beta distribution parameters
observed in window wj−1.
Example 4. Following Example 3, let us assume that the

current evaluation window w11 in a given court termi-
nates after 200 execution traces according to DMVW-
Mem. The output of process model assessment is
{Betam1,11, . . . , Betam5,11}. Figure 3 shows Betam5,11,
where αm5,11=110 and βm5,11=2, meaning that m5 has
been frequently sampled and successfully evaluated. Let
us then assume that the memory has size 10% (i.e.,
δ=0.1). Figure 3 shows Betam5,12 defined for window
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w12, which is initialized as: i) αm5,12=110×0.1=11;
ii) βm5,12=2×0.1=0.2, which is then set to 1 according
to Definition 4.

5 MODEL SUBSTITUTION

Process model substitution is executed on the basis of
process model assessment in Section 4. It takes as input
the results of the DMVW-Mem evaluation in the current
window, and returns as output the model to be selected and
used by the application in the following window.

5.1 Ranking-Based Substitution
Ranking-based substitution ranks models m∈cl in a given
window wj and determines the model m̂ to be used in the
following window wj+1. Let us recall that αm (βm, resp.) is
incremented by 1 when p .S is successfully (unsuccessfully,
resp.) evaluated on trace et∈wj (Section 3.3). Ranking-based
substitution is based on a metric evaluating how frequently
each model is selected by Thompson Sampling and success-
fully evaluated in DMVW-Mem, as follows.
Definition 5 (Ranking Metric). Let wj be a window and m

a model. The value of ranking metric rmm,j of m in wj

is retrieved as αm,j/(αm,j + βm,j).

According to Definition 5, rmm,j is the ratio between the
number of successful evaluations of m (in terms of p .S ) and
the total number of draws computed by DMVW-Mem in wj .
It is retrieved for every model in cl and used for ranking.

Substitution. At the end of window wj , the top-ranked
model m̂ is selected and used within window wj+1. The
substitution happens when wj terminates according to the
value remaining in the experiment (Section 4.1).

We note that the ranking can also be used in case
further substitutions in wj+1 are needed. For instance, the
second model in the ranking is used when m̂ experiences an
(unrecoverable) error.
Example 5. Following Example 4, the ranking metric

rmm5,11 has value 110/(110 + 2)≈0.98. Let us assume
that rmm5,11 has the highest value: m5 substitutes the

model used in w11, and is used for bail prediction in w12

(i.e., m̂=m5).

The assumption that the ranking computed for wj is
appropriate for wj+1 does not hold when transient changes
in the models non-functional behavior are observed within
wj+1 (e.g., a sharp change in the environmental context). In
this scenario, although m̂ becomes suboptimal, it cannot be
substituted until the following window begins. To address
this issue, we propose an approach based on early substitu-
tion that is presented in Section 5.2.

5.2 Assurance-Based Substitution

Assurance-based substitution triggers early substitution of
the selected model m̂ before window w terminates. It mon-
itors m̂ by computing its assurance level as follows.
Definition 6 (Assurance level). Let m̂ be the selected model

and ett∈wj an execution trace. The assurance level alt of
m̂ given ett is vm̂t(θ)/v∗(θ

(g)).

According to Definition 6, alt is the ratio between i)
the reward vm̂t(θ) of the selected model m̂ retrieved at
execution trace ett and ii) the reward v∗(θ

(g)) of the optimal
model m∗, according to the Monte Carlo simulation in
DMVW-Mem (Section 4.1). We note that the assurance level
can be retrieved for each model mi using the corresponding
reward as numerator.

The assurance level al is used to calculate the degrada-
tion of the selected model. Formally, let ett be an execution
trace in window wj . The degradation of m̂ at ett∈wj is
defined as follows.

degt = 1−
∑t

i=1 ali
t

(5)

Substitution. It works as the ranking-based substitution but
the selected model m̂ is substituted with the second model
in the ranking before the window termination (i.e., early
substitution), iff its degradation degt exceeds threshold thr
(degt>thr).

Early substitution copes with transient changes within
the window according to the degradation represented in
thr. A high (low, resp.) threshold means high (low, resp.)
tolerance. For instance, a high tolerance is preferable when
the substitution overhead is high (e.g., when large models
should be physically moved). A low tolerance is preferable
when small variations in the properties of the deployed
models has a strong impact on the application behavior. We
note that, given its fundamental role in the substitution pro-
cess, we experimentally evaluated the adoption of different
degradation thresholds thr in Section 7.3.
Example 6. Following Example 5, let us consider model

m5 as the selected model and model m4 as the second
model in the ranking. Figure 4 shows an example of the
assurance levels of m̂5 and m4, denoted as alm̂5,t and
alm4,t, respectively. Figure 4 also shows the correspond-
ing logarithmic trend lines for readability, and the value
remaining in the experiment, using DMVW-Mem.
Let us first consider ranking-based substitution only. At
t=290, window wj terminates according to the value
remaining in the experiment (Section 4.1). DMVW-Mem
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Fig. 4. Assurance levels of m̂5 (ranked first) and m4 (ranked second),
denoted as alm̂5,t and alm4,t, respectively. The plot shows the logarith-
mic trend lines and the outcomes in relation to the value remaining in
the experiment of the DMVW-Mem in a given time window w.

recomputes the ranking; m4 is the top-ranked model
while m5 the second one. DMVW-Mem triggers ranking-
based substitution, and m4 becomes the selected model
(m̂=m4) for window wj+1.
Let us then consider assurance-based substitution. We
can observe that alm̂5,t decreases as execution traces
arrive. From t=38, alm̂5,t stably becomes less than 1.
Around t=87, alm̂4,t overcomes alm̂5,t thus suggesting
a possible substitution. However, the degradation of
model m5 is not severe enough to justify the early substi-
tution (i.e., the degradation is lower than the degradation
threshold).

6 WALKTHROUGH

We present a walkthrough of our approach based on the
reference scenario in Example 1. Figure 5 shows the pseu-
docode of our approach.

The five models in the candidate list cl in Example 1 are
first evaluated offline using the Static MAB in Section 3.3,
to retrieve the optimum model m∗ that initializes our ap-
proach. Let us assume that model m2 is selected as the
optimal model (m̂=m∗). Our model assessment and substi-
tution processes (Figure 5) begin, instantiating the DMVW-
Mem. The processes take as input i) the models in cl, ii) the
observed execution traces, iii) the non-functional property
fairness in Example 3, iv) the memory size δ, v) the early
substitution threshold thr, and vi) the minimum number
of MAB iterations. Execution traces observed from all the
models are given as input to process model assessment.
For each execution trace, the function thompson sampling
in DMVW-Mem chooses a model among those in cl by
drawing a sample from each model Beta distribution and
retrieving the one with the highest value. The retrieved
model is evaluated according to the fairness score func-
tion (function score function in Figure 6), updating the
corresponding Beta distribution accordingly (Definition 4).
Then, process model assessment invokes function monte -
carlo simulation to simulate the probabilities of models
being winners. It creates a two-dimensional matrix with

dimensions |cl|×g, where g is the number of estimations.
Each cell contains samples drawn from the models’ Beta
distributions; the matrix counts the frequency of each model
being winner and approximates the probability distribution
p(θ|yt), accordingly.

Process model assessment proceeds until the minimum
number of iterations is met and the value remaining in the
experiment permits to reach a statistically relevant decision
(function should terminate). At this point, the evaluation
window ends (function handle window).

Upon process model assessment ends, process model
substitution invokes function send into production rank-
ing models proportionally to the number of their successful
evaluations of the non-functional property (ranking metric
in Definition 5). For instance, the ranking at the end of
window w1 is {m3, m2, m1, m4, m5}, from best to worst.
The top-ranked model (m3) is pushed to production re-
placing m2 selected at deployment time by the Static MAB
(Section 5.1). Process model substitution also monitors the
selected model invoking function assurance management.
The latter verifies whether the non-functional behavior of
the selected model is worsening with respect to the opti-
mum model estimated by the Monte Carlo simulation. It
computes the assurance level alt for each new execution
trace ett (Definition 6) and uses it to retrieve the overall
degradation (equation 5). For instance, during window w2,
the degradation of m3 is negligible, meaning that m3 is still
adequate according to the data observed in w2 and does not
need to be substituted in advance.

When the current window w2 terminates, process model
substitution recomputes the ranking. For instance, the rank-
ing is {m3,m2,m4,m1,m5}, and m3 is used as the selected
model for window w3. In w3, process model substitution
observes a constant degradation in the assurance level of
m3, reaching the early substitution threshold. Early substi-
tution is therefore triggered and the second model in the
ranking (m2) substitutes m3. Again when the current win-
dow w3 terminates, process model substitution recomputes
the ranking and m2 is confirmed at the top of the ranking.

Overall, this adaptive approach ensures that i) model
substitution happens only when the decision is statistically
relevant according to the observed behavior (ranking-based
substitution in DMVW-Mem), ii) a sub-optimal substitution
decision can be fixed as soon as it is detected without
waiting for the entire evaluation window (assurance-based
substitution), and iii) the entire process can be fine-tuned
according to each scenario.

7 EXPERIMENTAL EVALUATION

We experimentally evaluated our approach focusing on:
i) the model assessment at development time using Static
MAB; ii) the model substitution at run time using Dynamic
MAB, also evaluating the impact of different memory sizes;
iii) quality and iv) performance of ranking-based and assur-
ance-based substitutions.

7.1 Experimental Settings

We considered the application for bail estimation and prop-
erty fairness in our reference example in Section 6. In our
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INPUT
cl: models to be ranked
et[]: execution traces
p: target non-functional property
δ: memory size
thr: early substitution threshold
burn in: minimum number of iterations

MAIN
i=0 /* Iteration counter */

/* Begin the DMVW-Mem */
for each ett∈et[]

m∗=thompson sampling(cl)
apply score function(ett, m∗,

VARIANCETHRESHOLD)
(g[], p(θ|yt))=monte carlo simulation(cl)
est models[]=record current estimates of
each m∈cl wins according to ranking metric
if (i>burn in) AND should terminate(p(θ|yt),

est models, g[])
handle window()

else
i=i+1
/* Continue with the next trace */

THOMPSON SAMPLING
for each m∈cl

sample=draw sample from Betam
m∗=argmax sample
return m∗

MONTE CARLO SIMULATION
g=100
g[]= matrix |cl|×g of samples

drawn from Betam ∀m∈cl
compute p(θ | yt) from g[]
return g[], p(θ|yt)

SHOULD TERMINATE
residualr=0.01
compute vm∗,t (θ0) from est models[]

r(g)=
v∗(θ

(g))−v
m∗,t (θ

(g))

v
m∗,t (θ(g))

return percentile(r(g), 0.95)≤vm∗,t (θ0)×
residualr

HANDLE WINDOW
send into production(m̂, cl)
j − 1, j = previous and current windows
for each m∈cl

/* Initialize Beta distrib. according to δ */
αm,j=αm,j−1×δ
βm,j=βm,j−1×δ

SEND INTO PRODUCTION
models rank=sort cl in descending order

according to αm/(αm + βm)
assurance management(models rank)
m̂=models rank[0]
push(m̂) into production

ASSURANCE MANAGEMENT
cum assurance=0
i=1 /* counter */
for each ett∈w

alt=vm̂t (θ)/v∗(θ(g))
cum assurance=cum assurance+alt
degt=1− cum assurance/i
if degt>thr

/* Early substitution */
m̂=models rank[1]
push(m̂) into production

i=i+1

Fig. 5. Pseudocode of our approach.

experiments, we used the dataset of the Connecticut State
Department of Correction.1 This dataset provides a daily
updated list of people detained in the Department’s facilities
awaiting a trial. It anonymously discloses data of individ-
ual people detained in the correctional facilities every day
starting from July 1st, 2016. It contains attributes such as
last admission date, race, gender, age, type of offence and
facility description, in more than four millions data points
(at the download date). We divided this set into training and
test sets, where the training set includes more than 3 million
points.

We modeled the score function p .S of property fairness
as the variance (σ2) of the bail amount in relation to sensitive
attributes gender and race [40], [41], [42]. Figure 6 shows the
pseudocode of the score function and its usage according to
the threshold-based evaluation in Section 5.2. We generated
five Naive Bayes models cl={m1, . . . , m5}, each one trained
on a training set randomly extracted from the main training
set. The models showed similar performance, in terms of
precision and recall in bail estimation. We also extracted 10
test sets corresponding to 10 individual experiments exp1–
exp10 to be used in our experimental evaluation.

Experiments have been run on a laptop running Mi-
crosoft Windows 10, equipped with a CPU Intel Core i7
@ 2.6 GHz and 16 GBs of RAM, using Python 3 with
libraries numpy v1.19.1 [43], pandas v1.2.5 [44], [45] and
scikit-learn v0.22.1 [46]. Datasets, code, and experimen-
tal results are available at https://github.com/SESARLab/
continuous-management-of-ml-applications.

7.2 Model Assessment
We present the experimental evaluation of our Static MAB
for model assessment at development time. We compare the

1. Available at https://data.ct.gov/Public-Safety/
Accused-Pre-Trial-Inmates-in-Correctional-Faciliti/b674-jy6w and
downloaded on February 21st, 2020.

INPUT
et: execution trace
m∗: Thompson selected model
VARIANCETHRESHOLD: variance threshold

OUTPUT
αm∗ and βm∗

SCORE FUNCTION
rows[] = et
rows[] += generate test data for all protected

groups against et
predicted vals[] = m∗.predict(rows[])
var=variance(predicted vals[])
return var

APPLY SCORE FUNCTION
var=score function(et)
if (var<VARIANCETHRESHOLD)
αm∗=αm∗+1

else
βm∗=βm∗+1

Fig. 6. Pseudocode of the score function of property fairness and its
usage.

five Naive Bayes models using the Static MAB approach,
by evaluating their behavior with respect to non-functional
property fairness. Table 2 shows the Thompson Sampling
draws for the five models in the candidate list on a ran-
domly chosen sample (2,000 data points) for each of the 10
experiments.

Table 2 shows the distribution of models selected as
best candidate (denoted in bold) for property fairness. Since
m3 is never selected as the best candidate, it is removed
from the candidate list for the rest of the experimental
evaluation. We note that comparing models based on the
same algorithm (i.e., Naive Bayes) is more challenging than
considering different algorithms [22], posing our experi-
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TABLE 2
Static MAB comparison in terms of Thompson Sampling draws on a
random sample of 2,000 data points for each experiment. The best

candidate for each experiment is denoted in bold.

Experiments m1 m2 m3 m4 m5

exp1 1,021 156 609 28 186
exp2 4 876 349 462 309
exp3 414 286 341 645 314
exp4 55 198 670 1,028 49
exp5 432 84 208 666 610
exp6 138 255 50 607 950
exp7 419 31 268 514 768
exp8 205 528 135 104 1,028
exp9 288 394 35 43 1,240
exp10 104 1278 112 453 53
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Fig. 7. Individual window sizes and moving average trends across all
sets of execution traces with different memory sizes for exp1.

ments in a worst-case scenario.

7.3 Model Substitution

We present the experimental evaluation of our process
model substitution using DMVW-Mem with different mem-
ory sizes (δ0=0%, δ5=5%, δ10=10%, δ25=25%). We evalu-
ated i) the impact of the memory on the window size, ii)
the impact of the ranking-based substitution in terms of
stability of model selections, iii) the quality of the ranking-
based substitution, and iv) the quality of the assurance-
based substitution. We note that no artificial degradation
was introduced during the experiments.

7.3.1 Memory Size and Ranking

Figure 7 shows the window size varying the memory in
experiment exp1 with residual threshold residualr=0.01 (Sec-
tion 4.1). We note that a bigger memory corresponds to a
smaller window. This is expected, since the DMVW-Mem
does not start from scratch in every window, and the more
DMVW-Mem knows about the models’ Beta distributions,
the sooner the value remaining in the experiment reaches
the threshold. Considering all the experiments, the average
window size for δ25 is 157 confirming the trend in Figure 7.

Let us now consider the model selected according to the
DMVW-Mem ranking. Figure 8 shows the selected model
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Fig. 8. The selected model for each execution trace et of experiment
exp1 with different memory sizes δ.

for each set of execution traces in experiment exp1, consid-
ering different memory sizes. We note that extemporaneous
changes on the selected model are frequent without memory
(δ0), less frequent with δ5, where clusters of continuously
selected models emerge, and highly infrequent with δ10.
Figure 8(d) shows a stable selection of model m2, while
models m4 and m5 are often not selected preferring m1

instead. Considering the entire ranking, model m1 is ranked
at the second position with δ25, while m4 at the third
position.

In general, we observe that the number of changes across
the experiments, in terms of selected models, decreases as
the memory increases. On average, across all experiments,
it decreases by 41.18% when memory increases from δ5 to
δ10 (from 34 changes on average with δ5 to 20 changes
on average with δ10); it decreases by 20% when memory
increases from δ10 to δ25 (from 20 changes on average with
δ10 to 16 changes on average with δ25).

Figure 9 shows an aggregated ranking for all the experi-
ments with δ10. It shows the percentage of times a model has
been ranked into a specific position for all the experiments.
We note that exp1 was one of the most balanced experiments
in terms of ranking, having at least three models (m1,
m2, and m5) with a similar percentage of first and second
positions in the ranking. In exp2 and exp8, m4 and m5

were ranked at first or second position ≈80% of the times.
More specifically, m1 and m5 are ranked as the first model
in the ranking 41.39% and 27.87% of times, respectively
(Figure 8(c)). When m5 is not ranked first, it is ranked
second 26.36% of times, while m1 17.21%.

Considering all experiments and memory sizes, when
compared with δ5, we note an average decrease of ranking
changes in the first position of 34.66% with δ10 and of
62.43% with δ25. This is also clear from Figure 8(d), where
m2 was ranked in the first position most of the times.

7.3.2 Quality Evaluation
We evaluated the quality of ranking-based substitution
and assurance-based substitution varying the memory. The
ranking retrieved according to DMVW is used as baseline.

Let R denote the function that returns as output the
(current) position in the DMVW-based ranking of the (cur-
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Fig. 9. Stacked histograms showing the ranking of the models in each of
the 10 experiments with δ10.

rent) top-ranked model in the DMVW-Mem-based ranking;
this position is a number ∈[1, . . . , k] with k=|cl|. The
residual error ξ measures the difference between the ranking
obtained with DMVW-Mem and DMVW, and is defined as:

ξ = penalty
(
R− 1

k − 1

)
, (6)

where penalty is the residual penalty function. We note that
in case the top-ranked model according to DMVW-Mem is
top-ranked also according to DMVW, the residual error is
ξ=penalty(0); in case it is ranked last according to DMVW,
the residual error is ξ=penalty(1). Residual penalty function
penalty is defined as a sigmoid function as follows:

penalty(x) =
1

1 + e−c1(x−c2)
, (7)

where c2 control the x of the sigmoid inflection point
and c1 the slope. The residual error measures the difference
in terms of ranking between the different settings. While it
is not an indicator of the absolute quality, we assume this
measure as a valid indicator of the relative quality between
the different settings of our solution.

Ranking-based substitution: Figure 10 shows the cumula-
tive residual error ξ̂=

∑
t ξ (i.e., the sum of the error retrieved

in each window and execution trace) for exp1 with differ-
ent memory sizes. It also shows, marked with “×”, the
execution traces where model substitutions occurred due
to changes at the top of the ranking. We note that in this
experiment the bigger the memory, the bigger the cumu-
lative residual error. This effect is compensated by fewer
model substitutions as also demonstrated in Section 7.3.1.
We also note that, depending on the application domain, the
memory settings can be dynamic. For instance, in scenarios
where fast reaction to changes is more important than
stability of the selected model, the memory can be lowered;
it can be increased in scenarios where stability is important
to counteract fluctuations.

Considering all experiments and memory sizes, we note
an average cumulative residual error of 163.67 with δ5 and
of 243.63 with δ25, corresponding to an average increase of
48.85%. As depicted in Figure 9, our experiments revealed
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Fig. 10. Cumulative residual error ξ̂k between DMVW (δ0) and the
DMVW-Mem with different memory sizes δi and number of traces k for
experiment exp1. Model substitutions are marked with “X”.

a frequent variability among the best candidate models.
Therefore, the most suitable approach in terms of residual
error was the one having lower memory.

Assurance-based substitution: Using the memory settings
in Section 7.3.1, we first evaluated the impact of the
degradation threshold thr, varying its value in thr5=0.05,
thr10=0.10, and thr25=0.25.

Figure 11 shows the total number of triggered early
substitutions (denoted as total) compared with total number
of substitutions that really occurred at end of the window
(i.e, the correct early substitutions, denoted as relevant), on
average across all experiments and memory settings. We
observe that in 89% of the cases, an early substitution has
been correctly triggered. In detail, an early substitution was
correctly triggered in 81% of the cases when using thr5,
increasing to 92% when using thr25. These results were
expected, since a higher threshold corresponds to a more
severe assurance variation, and thus to a higher likelihood
of the change being correct at the end of the window.

Figure 11 also shows the number of successfully exe-
cuted early substitutions (denoted as success) among the
relevant early substitutions. A successful early substitution
is a substitution where the model selected for substitution
is the one evaluated by DMVW-Mem at the first position of
the ranking at the end of the window. We observe that, in
93% of the cases on average, assurance-based early substi-
tution took the correct decision. This result also confirms the
quality of the entire retrieved ranking, meaning that when
a substitution was needed, the second-ranked model was
indeed the most suitable for substitution.

We also observe that i) as the early substitution threshold
thr increases, the number of early substitutions decreases.
For instance, with δ10, it decreases from 196 with thr5 to
147 with thr25; ii) the difference between the number of
substitutions with thr5 and thr25 is lower than expected
(e.g., from 301 to 243 with δ5). In other words, when a
degradation occurs, it exceeds thr25 in most of the cases.
Even this experiment confirms that a bigger memory corre-
sponds to fewer early substitutions. A more stable trend of
the assurance level of the selected model was also observed
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with bigger memory.
We then evaluated the duration of early substitutions, in

terms of the number of execution traces from the moment
when the early substitution is triggered to the end of the
considered window.

We observe that an increase in the memory and threshold
results in a decrease in the number of substitutions (see
Figure 11) and their duration. On average across all experi-
ments, the duration varies from ≈290 execution traces when
using δ5 and thr5 to 84 when using δ25 and thr25.

Finally, we observe that, similarly to the memory tuning,
the substitution threshold should be fine-tuned according
to the different application domains, to adequately react to
changes occurred within a given window.

Performance: We compared the performance of our
ranking-based and assurance-based substitutions with dif-
ferent memory settings and assurance thresholds on all the
experiments.

Figure 12 shows both the ranking-based and the
assurance-based substitution performance varying mem-
ory settings and thresholds. The results are presented as
the average time to compute an evaluation window. We

note that the ranking-based approach outperformed the
assurance-based approach with an average improvement
around 4.68%, due to the absence of assurance metric
computations and corresponding comparisons. We also note
that the impact of the different thresholds on performance
is negligible, with thr10 showing the best performance in
all conditions. Figure 12 clarifies that the dominating factor
is the memory size. This is due to the fact that a bigger
memory corresponds to a smaller window. In addition, it
also corresponds to fewer substitutions positively impact-
ing performance, because each substitution requires more
iterations in DMVW-Mem to converge.

8 RELATED WORK

Our approach guarantees stable application behavior over
time, by dynamically selecting the most suitable ML model
according to a (set of) non-functional property. This issue
has been studied from different angles in the literature:
i) classifier and ensemble selection, ii) functional and iii) non-
functional ML adaptation. At the end of this section, we also
present a detailed comparison of our approach with the
related work in terms of their category, objective, type of
objective (functional/non functional), and applicability to
ML models and properties.

Classifier and ensemble selection refers to the techniques
that select the most suitable (set of) classifier among a set
of candidates. It is referred to as classifier selection when
one classifier is selected, ensemble selection, otherwise [51].
It can be performed at training time (static), or for each
(subset of) data point at inference time (dynamic). The lat-
ter, often combined with static selection, typically shows
the best performance [12]. Selection maximizes functional
metrics, often accuracy. Meta-learning is frequently used, as
surveyed by Khan et al. [52]. For instance, Cruz et al. [47]
proposed a dynamic ensemble selection that considers dif-
ferent spatial-based criteria using a meta-classifier. Zhu et
al. [14] defined a dynamic ensemble selection based on
the generation of diversified classifiers. Selection is based
on spatial information (i.e., the most competent classifiers
for a region). Classifiers predictions are combined using
weighted majority voting, weights depend on the classifiers
competency for a data point. Zhang et al. [13] defined a
dynamic ensemble selection whose selection criterion con-
siders the classifiers synergy. It evaluates the contribution of
each classifier to the ensemble, in terms of the accuracy re-
trieved with and without the classifier. For each data point,
it selects the classifiers with a positive contribution, and
uses such contribution as weight in predictions aggregation.
Other approaches focused on imbalanced learning. Roy et
al. [12] showed that specific preprocessing (e.g., oversam-
pling of the underrepresented class) and dynamic, spatial-
based selection outperform static selection in this scenario.
Mousavi et al. [48] also used oversampling. Static selection
then defines the ensemble and its combiner (e.g., majority
voting). Dynamic selection finally retrieves a subset of the
ensemble for each data point. Pérez-Gállego et al. [49] fo-
cused on quantification tasks with drifts between classes. The
proposed dynamic ensemble selection uses a specifically
designed criterion, selecting the classifiers whose training
distribution is the most similar to the input data points. Our

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3486226

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

TABLE 3
Comparison with related work.

Ref. Cat. Objective Objective Type Applicability
ML Model Property

Cruz et al. [47] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗
Mousavi et al. [48] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗

Roy et al. [12] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗
Pérez-Gállego et al. [49] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗

Zhang et al. [13] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗
Zhu et al. [14] S Select the best ensemble for a (set of) data point wrt quality metrics F ✓ ✗

Almeida et al. [15] FA Select the best ensemble for a (set of) data point wrt quality metrics
in the presence of drifts

F ✓ ✗

Tahmasbi et al. [9] FA Select the best classifier in the presence of drifts F ✓ ✗

Iosifidis et al. [32] NFA Fair predictions over time NF ✓ ≈
Zhang et al. [10], [11] NFA Balance quality and fairness over time F, NF ✗ ≈

Iosifidis et al. [34] NFA Fair predictions over time in online learning NF ≈ ≈
Zhang et al. [33] NFA Balance quality and fairness over time F, NF ✗ ≈
Badar et al. [50] NFA Train a fair, Federated Learning model NF ✗ ≈

This – Stable application behavior over time wrt an arbitrary non-func.
property

NF ✓ ✓

approach implements a dynamic classifier selection, which
departs from existing solutions implementing a (dynamic)
selection of a (set of) classifier for each data point to maxi-
mize accuracy at inference time. Our goal is rather the run-
time selection and substitution of the ML model to the aim of
guaranteeing a stable behavior of the application with respect to a
specific (set of) non-functional property.

Functional adaptation refers to the techniques that adapt
a ML model (and application) according to changing con-
ditions, notably a drift, to keep quality metrics high. Ac-
cording to the survey by Lu et al. [53], the possible actions
upon a detected drift are: training and using a new ML
model, using ensemble purposefully trained for drift, and
adapting an existing ML model when the drift is localized
to a region. The issue of drift has been approached using
dynamic classifier selection. For instance, Almeida et al. [15]
designed a drift detector whose selection criterion considers
both spatial and concept-based information. It relies on
a set of diverse classifiers that is dynamically updated,
removing unnecessary classifiers and training new ones
as new concepts emerge. Tahmasbi et al. [9] designed a
novel adaptive ML model. It uses one classifier at time,
and, upon drift detection, selects the subsequent classifier
with the highest quality in the last evaluation window. Our
approach implements an adaptation process, which departs
from existing solutions based on the online re-training of
individual ML models according to drift or the selection
of ML models that maximize quality under drift. Our goal
is rather the adaptation of the overall ML-based application
according to a (arbitrary) non-functional property of interest.

Non-functional adaptation refers to the techniques that
adapt a ML model (and application) according to a non-
functional property. Fairness is the most studied property
in literature in both static and dynamic settings; we focus
on the latter due to its connection with the work in this
paper. For instance, Iosifidis et al. [32] designed an approach
that tackles fairness and concept drift. It uses two pre-
processing techniques modifying data, which are then taken
as input by classifiers that can natively adapt to concept
drifts (e.g., Hoefdding trees). A similar solution is proposed

by Badar et al. [50] in federated learning. It first detects
drift, and then evaluates if fairness is no longer supported.
It then performs oversampling as countermeasure. Zhang
et al. [10], [11] introduced a training algorithm based on
Hoefdding trees, whose splitting criterion considers fairness
and accuracy. Such idea has also been applied to random
forest models [33]. Iosifidis et al. [34] designed an online
learning algorithm that detects class imbalance and lack
of fairness, and adjusts the ML model accordingly. It fixes
weights during boosting (for imbalance) and the learned
decision boundary (for fairness). Our approach implements
an adaptation process, which departs from existing re-
training solutions using a custom algorithm focused on a
specific property (fairness). Our goal is rather the adaptation
of the overall application behavior according to any non-functional
properties and ML algorithms.

Table 3 shows how our approach compares with the re-
lated work in terms of Category (denoted as Cat.), Objective,
Objective Type, and Applicability. Category can be i) classifier
and ensemble selection (denoted as S), ii) functional adapta-
tion (denoted as FA), and iii) non-functional adaptation (de-
noted as NFA). Objective Type can be i) functional (denoted
as F), and ii) non-functional (denoted as NF). Applicability
is expressed in terms of i) ML Model (✓ if applicable to any
ML algorithm, ≈ if applicable to a class of ML algorithms,
✗ if applicable to a specific ML algorithm only); ii) Prop-
erty (✓ if applicable to any (non-)functional property, ≈
if applicable to a class of (non-)functional properties, ✗ if
applicable to a specific (non-)functional property). Table 3
shows that our approach (last row in Table 3) is the only
architectural and methodological solution that supports stable
non-functional behavior of ML-based applications. It builds on
a smart and dynamic multi-model substitution departing
from expensive re-training approaches and inference-time
classifier selection for individual data points.

9 CONCLUSIONS

We presented a multi-model approach for the continuous
management of ML-based application non-functional be-
havior. Our approach guarantees a stable application behav-
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ior at run time, over time and across model changes, where
multiple ML models with similar non-functional properties
are available and one model is selected at time according to
such properties and the application context. Our approach
manages (dynamic and unpredictable) contextual changes
in modern ML deployments, supporting early model substi-
tutions based on Dynamic MAB and assurance evaluation.
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degli Studi di Milano, where he leads the Se-
cure Service-oriented Architectures Research
(SESAR) Laboratory. He is also the Founding
Director of the Center for Cyber-Physical Sys-
tems, Khalifa University, UAE. He received an
Honorary Doctorate from INSA Lyon for his con-
tributions to research and teaching on big data
analytics. His research interests include cyber-
security, big data, and cloud/edge processing,

and he has published over 680 peer-reviewed articles and books. He
is a Distinguished Scientist of ACM and was a recipient of the 2017
Stephen Yau Award.

Paolo G. Panero is a master student at the De-
partment of Computer Science, Università degli
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