In 2017, Lienert and Tumulka proved Born's rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Born's rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolution between any two Cauchy surfaces, satisfying that there is no interaction faster than light and no propagation faster than light. Here, we prove Born's rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $ \Sigma $, then the observed particle configuration on $ Sigma $ is a random variable with distribution density $ |\Psi_\Sigma|^2 $, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant.
Another Proof of Born’s Rule on Arbitrary Cauchy Surfaces / S. Lill, R. Tumulka. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 23:4(2021), pp. 1489-1524. [10.1007/s00023-021-01130-4]
Another Proof of Born’s Rule on Arbitrary Cauchy Surfaces
S. Lill
Primo
;
2021
Abstract
In 2017, Lienert and Tumulka proved Born's rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Born's rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolution between any two Cauchy surfaces, satisfying that there is no interaction faster than light and no propagation faster than light. Here, we prove Born's rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $ \Sigma $, then the observed particle configuration on $ Sigma $ is a random variable with distribution density $ |\Psi_\Sigma|^2 $, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant.File | Dimensione | Formato | |
---|---|---|---|
s00023-021-01130-4.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.